diff --git a/spacy/cli/ud_train.py b/spacy/cli/ud_train.py index 4c0b3c7eb..424fa6e2e 100644 --- a/spacy/cli/ud_train.py +++ b/spacy/cli/ud_train.py @@ -305,10 +305,28 @@ def initialize_pipeline(nlp, docs, golds, config, device): nlp.tagger.add_label(tag) if torch is not None and device != -1: torch.set_default_tensor_type('torch.cuda.FloatTensor') - return nlp.begin_training( + optimizer = nlp.begin_training( lambda: golds_to_gold_tuples(docs, golds), device=device, subword_features=config.subword_features, conv_depth=config.conv_depth, bilstm_depth=config.bilstm_depth) + if config.pretrained_tok2vec: + _load_pretrained_tok2vec(nlp, config.pretrained_tok2vec) + return optimizer + + +def _load_pretrained_tok2vec(nlp, loc): + """Load pre-trained weights for the 'token-to-vector' part of the component + models, which is typically a CNN. See 'spacy pretrain'. Experimental. + """ + with Path(loc).open('rb') as file_: + weights_data = file_.read() + loaded = [] + for name, component in nlp.pipeline: + if hasattr(component, 'model') and hasattr(component.model, 'tok2vec'): + component.tok2vec.from_bytes(weights_data) + loaded.append(name) + return loaded + ######################## @@ -318,9 +336,9 @@ def initialize_pipeline(nlp, docs, golds, config, device): class Config(object): def __init__(self, vectors=None, max_doc_length=10, multitask_tag=False, multitask_sent=False, multitask_dep=False, multitask_vectors=None, - bilstm_depth=0, nr_epoch=30, min_batch_size=100, max_batch_size=1000, - batch_by_words=True, dropout=0.2, conv_depth=4, subword_features=True, - vectors_dir=None): + bilstm_depth=0, nr_epoch=30, min_batch_size=750, max_batch_size=750, + batch_by_words=True, dropout=0.1, conv_depth=4, subword_features=True, + vectors_dir=None, pretrained_tok2vec=None): if vectors_dir is not None: if vectors is None: vectors = True