mirror of https://github.com/explosion/spaCy.git
More serialization fixes. Still broken
This commit is contained in:
parent
9c9ee24411
commit
6522ea6c8b
|
@ -166,6 +166,8 @@ class TokenVectorEncoder(object):
|
|||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
deserialize = OrderedDict((
|
||||
('model', lambda b: util.model_from_bytes(self.model, b)),
|
||||
('vocab', lambda b: self.vocab.from_bytes(b))
|
||||
|
@ -278,9 +280,14 @@ class NeuralTagger(object):
|
|||
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
||||
vocab.morphology.lemmatizer)
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
self.model = with_flatten(
|
||||
if self.model is True:
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
||||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(self.vocab.morphology.n_tags, token_vector_width)))
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
|
@ -294,11 +301,16 @@ class NeuralTagger(object):
|
|||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
def load_model(b):
|
||||
if self.model is True:
|
||||
token_vector_width = util.env_opt('token_vector_width', 128)
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
||||
util.model_from_bytes(self.model, b)
|
||||
deserialize = {
|
||||
'model': lambda b: util.model_from_bytes(self.model, b),
|
||||
'vocab': lambda b: self.vocab.from_bytes(b)
|
||||
'vocab': lambda b: self.vocab.from_bytes(b),
|
||||
'model': lambda b: load_model(b)
|
||||
}
|
||||
util.from_bytes(deserialize, exclude)
|
||||
util.from_bytes(bytes_data, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
|
@ -336,9 +348,14 @@ class NeuralLabeller(NeuralTagger):
|
|||
if dep not in self.labels:
|
||||
self.labels[dep] = len(self.labels)
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
self.model = with_flatten(
|
||||
if self.model is True:
|
||||
self.model = self.Model(len(self.labels), token_vector_width)
|
||||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return with_flatten(
|
||||
chain(Maxout(token_vector_width, token_vector_width),
|
||||
Softmax(len(self.labels), token_vector_width)))
|
||||
Softmax(n_tags, token_vector_width)))
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
|
@ -412,7 +429,6 @@ cdef class NeuralEntityRecognizer(NeuralParser):
|
|||
return (NeuralEntityRecognizer, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
|
||||
|
||||
cdef class BeamDependencyParser(BeamParser):
|
||||
TransitionSystem = ArcEager
|
||||
|
||||
|
|
Loading…
Reference in New Issue