mirror of https://github.com/explosion/spaCy.git
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
647d1a1efc
|
@ -2,7 +2,7 @@ cython>=0.25
|
|||
numpy>=1.15.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=2.0.1,<2.1.0
|
||||
thinc==7.0.0.dev0
|
||||
thinc==7.0.0.dev1
|
||||
blis>=0.2.2,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
cytoolz>=0.9.0,<0.10.0
|
||||
|
|
2
setup.py
2
setup.py
|
@ -200,7 +200,7 @@ def setup_package():
|
|||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=2.0.1,<2.1.0",
|
||||
"thinc==7.0.0.dev0",
|
||||
"thinc==7.0.0.dev1",
|
||||
"blis>=0.2.2,<0.3.0",
|
||||
"plac<1.0.0,>=0.9.6",
|
||||
"ujson>=1.35",
|
||||
|
|
12
spacy/_ml.py
12
spacy/_ml.py
|
@ -48,11 +48,11 @@ def cosine(vec1, vec2):
|
|||
|
||||
def create_default_optimizer(ops, **cfg):
|
||||
learn_rate = util.env_opt('learn_rate', 0.001)
|
||||
beta1 = util.env_opt('optimizer_B1', 0.9)
|
||||
beta2 = util.env_opt('optimizer_B2', 0.9)
|
||||
eps = util.env_opt('optimizer_eps', 1e-12)
|
||||
beta1 = util.env_opt('optimizer_B1', 0.8)
|
||||
beta2 = util.env_opt('optimizer_B2', 0.8)
|
||||
eps = util.env_opt('optimizer_eps', 0.00001)
|
||||
L2 = util.env_opt('L2_penalty', 1e-6)
|
||||
max_grad_norm = util.env_opt('grad_norm_clip', 1.)
|
||||
max_grad_norm = util.env_opt('grad_norm_clip', 5.)
|
||||
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1,
|
||||
beta2=beta2, eps=eps)
|
||||
optimizer.max_grad_norm = max_grad_norm
|
||||
|
@ -445,11 +445,11 @@ def getitem(i):
|
|||
|
||||
|
||||
def build_tagger_model(nr_class, **cfg):
|
||||
embed_size = util.env_opt('embed_size', 7000)
|
||||
embed_size = util.env_opt('embed_size', 2000)
|
||||
if 'token_vector_width' in cfg:
|
||||
token_vector_width = cfg['token_vector_width']
|
||||
else:
|
||||
token_vector_width = util.env_opt('token_vector_width', 128)
|
||||
token_vector_width = util.env_opt('token_vector_width', 96)
|
||||
pretrained_vectors = cfg.get('pretrained_vectors')
|
||||
subword_features = cfg.get('subword_features', True)
|
||||
with Model.define_operators({'>>': chain, '+': add}):
|
||||
|
|
|
@ -24,10 +24,12 @@ import sys
|
|||
from collections import Counter
|
||||
|
||||
import spacy
|
||||
from spacy.attrs import ID
|
||||
from spacy.tokens import Doc
|
||||
from spacy.attrs import ID, HEAD
|
||||
from spacy.util import minibatch, minibatch_by_words, use_gpu, compounding, ensure_path
|
||||
from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer
|
||||
from thinc.v2v import Affine
|
||||
from thinc.api import wrap
|
||||
|
||||
|
||||
def prefer_gpu():
|
||||
|
@ -47,13 +49,14 @@ def load_texts(path):
|
|||
'''
|
||||
path = ensure_path(path)
|
||||
with path.open('r', encoding='utf8') as file_:
|
||||
texts = [json.loads(line)['text'] for line in file_]
|
||||
texts = [json.loads(line) for line in file_]
|
||||
random.shuffle(texts)
|
||||
return texts
|
||||
|
||||
|
||||
def stream_texts():
|
||||
for line in sys.stdin:
|
||||
yield json.loads(line)['text']
|
||||
yield json.loads(line)
|
||||
|
||||
|
||||
def make_update(model, docs, optimizer, drop=0.):
|
||||
|
@ -65,11 +68,33 @@ def make_update(model, docs, optimizer, drop=0.):
|
|||
RETURNS loss: A float for the loss.
|
||||
"""
|
||||
predictions, backprop = model.begin_update(docs, drop=drop)
|
||||
loss, gradients = get_vectors_loss(model.ops, docs, predictions)
|
||||
gradients = get_vectors_loss(model.ops, docs, predictions)
|
||||
backprop(gradients, sgd=optimizer)
|
||||
# Don't want to return a cupy object here
|
||||
# The gradients are modified in-place by the BERT MLM,
|
||||
# so we get an accurate loss
|
||||
loss = float((gradients**2).mean())
|
||||
return loss
|
||||
|
||||
|
||||
def make_docs(nlp, batch):
|
||||
docs = []
|
||||
for record in batch:
|
||||
text = record["text"]
|
||||
if "tokens" in record:
|
||||
doc = Doc(nlp.vocab, words=record["tokens"])
|
||||
else:
|
||||
doc = nlp.make_doc(text)
|
||||
if "heads" in record:
|
||||
heads = record["heads"]
|
||||
heads = numpy.asarray(heads, dtype="uint64")
|
||||
heads = heads.reshape((len(doc), 1))
|
||||
doc = doc.from_array([HEAD], heads)
|
||||
if len(doc) >= 1 and len(doc) < 200:
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def get_vectors_loss(ops, docs, prediction):
|
||||
"""Compute a mean-squared error loss between the documents' vectors and
|
||||
the prediction.
|
||||
|
@ -84,10 +109,8 @@ def get_vectors_loss(ops, docs, prediction):
|
|||
# and look them up all at once. This prevents data copying.
|
||||
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
||||
target = docs[0].vocab.vectors.data[ids]
|
||||
d_scores = (prediction - target) / prediction.shape[0]
|
||||
# Don't want to return a cupy object here
|
||||
loss = float((d_scores**2).sum())
|
||||
return loss, d_scores
|
||||
d_scores = prediction - target
|
||||
return d_scores
|
||||
|
||||
|
||||
def create_pretraining_model(nlp, tok2vec):
|
||||
|
@ -107,15 +130,77 @@ def create_pretraining_model(nlp, tok2vec):
|
|||
tok2vec,
|
||||
output_layer
|
||||
)
|
||||
model = masked_language_model(nlp.vocab, model)
|
||||
model.tok2vec = tok2vec
|
||||
model.output_layer = output_layer
|
||||
model.begin_training([nlp.make_doc('Give it a doc to infer shapes')])
|
||||
return model
|
||||
|
||||
|
||||
def masked_language_model(vocab, model, mask_prob=0.15):
|
||||
'''Convert a model into a BERT-style masked language model'''
|
||||
vocab_words = [lex.text for lex in vocab if lex.prob != 0.0]
|
||||
vocab_probs = [lex.prob for lex in vocab if lex.prob != 0.0]
|
||||
vocab_words = vocab_words[:10000]
|
||||
vocab_probs = vocab_probs[:10000]
|
||||
vocab_probs = numpy.exp(numpy.array(vocab_probs, dtype='f'))
|
||||
vocab_probs /= vocab_probs.sum()
|
||||
|
||||
def mlm_forward(docs, drop=0.):
|
||||
mask, docs = apply_mask(docs, vocab_words, vocab_probs,
|
||||
mask_prob=mask_prob)
|
||||
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
|
||||
output, backprop = model.begin_update(docs, drop=drop)
|
||||
|
||||
def mlm_backward(d_output, sgd=None):
|
||||
d_output *= 1-mask
|
||||
return backprop(d_output, sgd=sgd)
|
||||
|
||||
return output, mlm_backward
|
||||
|
||||
return wrap(mlm_forward, model)
|
||||
|
||||
|
||||
def apply_mask(docs, vocab_texts, vocab_probs, mask_prob=0.15):
|
||||
N = sum(len(doc) for doc in docs)
|
||||
mask = numpy.random.uniform(0., 1.0, (N,))
|
||||
mask = mask >= mask_prob
|
||||
i = 0
|
||||
masked_docs = []
|
||||
for doc in docs:
|
||||
words = []
|
||||
for token in doc:
|
||||
if not mask[i]:
|
||||
word = replace_word(token.text, vocab_texts, vocab_probs)
|
||||
else:
|
||||
word = token.text
|
||||
words.append(word)
|
||||
i += 1
|
||||
spaces = [bool(w.whitespace_) for w in doc]
|
||||
# NB: If you change this implementation to instead modify
|
||||
# the docs in place, take care that the IDs reflect the original
|
||||
# words. Currently we use the original docs to make the vectors
|
||||
# for the target, so we don't lose the original tokens. But if
|
||||
# you modified the docs in place here, you would.
|
||||
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
|
||||
return mask, masked_docs
|
||||
|
||||
|
||||
def replace_word(word, vocab_texts, vocab_probs, mask='[MASK]'):
|
||||
roll = random.random()
|
||||
if roll < 0.8:
|
||||
return mask
|
||||
elif roll < 0.9:
|
||||
index = numpy.random.choice(len(vocab_texts), p=vocab_probs)
|
||||
return vocab_texts[index]
|
||||
else:
|
||||
return word
|
||||
|
||||
|
||||
class ProgressTracker(object):
|
||||
def __init__(self, frequency=100000):
|
||||
self.loss = 0.
|
||||
self.loss = 0.0
|
||||
self.prev_loss = 0.0
|
||||
self.nr_word = 0
|
||||
self.words_per_epoch = Counter()
|
||||
self.frequency = frequency
|
||||
|
@ -132,7 +217,15 @@ class ProgressTracker(object):
|
|||
wps = words_since_update / (time.time() - self.last_time)
|
||||
self.last_update = self.nr_word
|
||||
self.last_time = time.time()
|
||||
status = (epoch, self.nr_word, '%.5f' % self.loss, int(wps))
|
||||
loss_per_word = self.loss - self.prev_loss
|
||||
status = (
|
||||
epoch,
|
||||
self.nr_word,
|
||||
"%.5f" % self.loss,
|
||||
"%.4f" % loss_per_word,
|
||||
int(wps),
|
||||
)
|
||||
self.prev_loss = float(self.loss)
|
||||
return status
|
||||
else:
|
||||
return None
|
||||
|
@ -145,12 +238,13 @@ class ProgressTracker(object):
|
|||
width=("Width of CNN layers", "option", "cw", int),
|
||||
depth=("Depth of CNN layers", "option", "cd", int),
|
||||
embed_rows=("Embedding rows", "option", "er", int),
|
||||
use_vectors=("Whether to use the static vectors as input features", "flag", "uv"),
|
||||
dropout=("Dropout", "option", "d", float),
|
||||
seed=("Seed for random number generators", "option", "s", float),
|
||||
nr_iter=("Number of iterations to pretrain", "option", "i", int),
|
||||
)
|
||||
def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
|
||||
embed_rows=1000, dropout=0.2, nr_iter=10, seed=0):
|
||||
embed_rows=5000, use_vectors=False, dropout=0.2, nr_iter=100, seed=0):
|
||||
"""
|
||||
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
||||
using an approximate language-modelling objective. Specifically, we load
|
||||
|
@ -175,11 +269,13 @@ def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
|
|||
with (output_dir / 'config.json').open('w') as file_:
|
||||
file_.write(json.dumps(config))
|
||||
has_gpu = prefer_gpu()
|
||||
print("Use GPU?", has_gpu)
|
||||
nlp = spacy.load(vectors_model)
|
||||
pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name
|
||||
model = create_pretraining_model(nlp,
|
||||
Tok2Vec(width, embed_rows,
|
||||
conv_depth=depth,
|
||||
pretrained_vectors=nlp.vocab.vectors.name,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=0, # Requires PyTorch. Experimental.
|
||||
cnn_maxout_pieces=2, # You can try setting this higher
|
||||
subword_features=True)) # Set to False for character models, e.g. Chinese
|
||||
|
@ -188,19 +284,19 @@ def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
|
|||
print('Epoch', '#Words', 'Loss', 'w/s')
|
||||
texts = stream_texts() if texts_loc == '-' else load_texts(texts_loc)
|
||||
for epoch in range(nr_iter):
|
||||
for batch in minibatch(texts, size=64):
|
||||
docs = [nlp.make_doc(text) for text in batch]
|
||||
for batch in minibatch(texts, size=256):
|
||||
docs = make_docs(nlp, batch)
|
||||
loss = make_update(model, docs, optimizer, drop=dropout)
|
||||
progress = tracker.update(epoch, loss, docs)
|
||||
if progress:
|
||||
print(*progress)
|
||||
if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**6:
|
||||
if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**7:
|
||||
break
|
||||
with model.use_params(optimizer.averages):
|
||||
with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_:
|
||||
file_.write(model.tok2vec.to_bytes())
|
||||
with (output_dir / 'log.jsonl').open('a') as file_:
|
||||
file_.write(json.dumps({'nr_word': tracker.nr_word,
|
||||
'loss': tracker.loss, 'epoch': epoch}))
|
||||
'loss': tracker.loss, 'epoch': epoch}) + '\n')
|
||||
if texts_loc != '-':
|
||||
texts = load_texts(texts_loc)
|
||||
|
|
|
@ -90,11 +90,11 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
|
|||
# starts high and decays sharply, to force the optimizer to explore.
|
||||
# Batch size starts at 1 and grows, so that we make updates quickly
|
||||
# at the beginning of training.
|
||||
dropout_rates = util.decaying(util.env_opt('dropout_from', 0.2),
|
||||
util.env_opt('dropout_to', 0.2),
|
||||
dropout_rates = util.decaying(util.env_opt('dropout_from', 0.1),
|
||||
util.env_opt('dropout_to', 0.1),
|
||||
util.env_opt('dropout_decay', 0.0))
|
||||
batch_sizes = util.compounding(util.env_opt('batch_from', 1000),
|
||||
util.env_opt('batch_to', 1000),
|
||||
batch_sizes = util.compounding(util.env_opt('batch_from', 750),
|
||||
util.env_opt('batch_to', 750),
|
||||
util.env_opt('batch_compound', 1.001))
|
||||
lang_class = util.get_lang_class(lang)
|
||||
nlp = lang_class()
|
||||
|
|
|
@ -25,6 +25,7 @@ from .compat import json_dumps
|
|||
|
||||
from libc.stdio cimport FILE, fopen, fclose, fread, fwrite, feof, fseek
|
||||
|
||||
|
||||
def tags_to_entities(tags):
|
||||
entities = []
|
||||
start = None
|
||||
|
@ -110,19 +111,23 @@ class GoldCorpus(object):
|
|||
# Write temp directory with one doc per file, so we can shuffle
|
||||
# and stream
|
||||
self.tmp_dir = Path(tempfile.mkdtemp())
|
||||
self.write_msgpack(self.tmp_dir / 'train', train)
|
||||
self.write_msgpack(self.tmp_dir / 'dev', dev)
|
||||
self.write_msgpack(self.tmp_dir / 'train', train, limit=self.limit)
|
||||
self.write_msgpack(self.tmp_dir / 'dev', dev, limit=self.limit)
|
||||
|
||||
def __del__(self):
|
||||
shutil.rmtree(self.tmp_dir)
|
||||
|
||||
@staticmethod
|
||||
def write_msgpack(directory, doc_tuples):
|
||||
def write_msgpack(directory, doc_tuples, limit=0):
|
||||
if not directory.exists():
|
||||
directory.mkdir()
|
||||
n = 0
|
||||
for i, doc_tuple in enumerate(doc_tuples):
|
||||
with open(directory / '{}.msg'.format(i), 'wb') as file_:
|
||||
msgpack.dump([doc_tuple], file_, use_bin_type=True, encoding='utf8')
|
||||
msgpack.dump([doc_tuple], file_, use_bin_type=True)
|
||||
n += len(doc_tuple[1])
|
||||
if limit and n >= limit:
|
||||
break
|
||||
|
||||
@staticmethod
|
||||
def walk_corpus(path):
|
||||
|
@ -153,7 +158,7 @@ class GoldCorpus(object):
|
|||
gold_tuples = read_json_file(loc)
|
||||
elif loc.parts[-1].endswith('msg'):
|
||||
with loc.open('rb') as file_:
|
||||
gold_tuples = msgpack.load(file_, encoding='utf8')
|
||||
gold_tuples = msgpack.load(file_, raw=False)
|
||||
else:
|
||||
msg = "Cannot read from file: %s. Supported formats: .json, .msg"
|
||||
raise ValueError(msg % loc)
|
||||
|
@ -350,7 +355,7 @@ def _json_iterate(loc):
|
|||
py_str = py_raw[start : i+1].decode('utf8')
|
||||
try:
|
||||
yield json.loads(py_str)
|
||||
except:
|
||||
except Exception:
|
||||
print(py_str)
|
||||
raise
|
||||
start = -1
|
||||
|
|
|
@ -759,7 +759,7 @@ class Tagger(Pipe):
|
|||
if self.model is True:
|
||||
token_vector_width = util.env_opt(
|
||||
'token_vector_width',
|
||||
self.cfg.get('token_vector_width', 128))
|
||||
self.cfg.get('token_vector_width', 96))
|
||||
self.model = self.Model(self.vocab.morphology.n_tags,
|
||||
**self.cfg)
|
||||
self.model.from_bytes(b)
|
||||
|
@ -878,7 +878,7 @@ class MultitaskObjective(Tagger):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, tok2vec=None, **cfg):
|
||||
token_vector_width = util.env_opt('token_vector_width', 128)
|
||||
token_vector_width = util.env_opt('token_vector_width', 96)
|
||||
softmax = Softmax(n_tags, token_vector_width)
|
||||
model = chain(
|
||||
tok2vec,
|
||||
|
|
|
@ -63,9 +63,9 @@ cdef class Parser:
|
|||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces',
|
||||
cfg.get('maxout_pieces', 2))
|
||||
token_vector_width = util.env_opt('token_vector_width',
|
||||
cfg.get('token_vector_width', 128))
|
||||
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 128))
|
||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 5000))
|
||||
cfg.get('token_vector_width', 96))
|
||||
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64))
|
||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000))
|
||||
pretrained_vectors = cfg.get('pretrained_vectors', None)
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
conv_depth=conv_depth,
|
||||
|
|
Loading…
Reference in New Issue