From 638caba9b5289cc2cf063a0f56f1862b3bcb057a Mon Sep 17 00:00:00 2001 From: Nirant Date: Sun, 2 Jun 2019 16:05:52 +0530 Subject: [PATCH] Add multiple packages to universe.json (#3809) [ci skip] * Add multiple packages to universe.json Added following packages: NLPArchitect, NLPRe, Chatterbot, alibi, NeuroNER * Auto-format * Update slogan (probably just copy-paste mistake) * Adjust formatting * Update tags / categories --- website/meta/universe.json | 98 +++++++++++++++++++++++++++++++++++--- 1 file changed, 91 insertions(+), 7 deletions(-) diff --git a/website/meta/universe.json b/website/meta/universe.json index 39602e0bb..12196cd91 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,22 +1,106 @@ { "resources": [ + { + "id": "nlp-architect", + "title": "NLP Architect", + "slogan": "Python lib for exploring Deep NLP & NLU by Intel AI", + "github": "NervanaSystems/nlp-architect", + "pip": "nlp-architect", + "thumb": "https://raw.githubusercontent.com/NervanaSystems/nlp-architect/master/assets/nlp_architect_logo.png", + "code_example": [], + "category": ["standalone", "research"], + "tags": ["pytorch"] + }, + { + "id": "NeuroNER", + "title": "NeuroNER", + "slogan": "Named-entity recognition using neural networks", + "github": "Franck-Dernoncourt/NeuroNER", + "pip": "pyneuroner[cpu]", + "thumb": "", + "code_example": [ + "from neuroner import neuromodel", + "nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)" + ], + "category": ["ner"], + "tags": ["standalone"] + }, + { + "id": "NLPre", + "title": "NLPre", + "slogan": "Natural Language Preprocessing Library in Health data", + "github": "NIHOPA/NLPre", + "pip": "nlpre", + "thumb": "", + "code_example": [ + "from nlpre import titlecaps, dedash, identify_parenthetical_phrases", + "from nlpre import replace_acronyms, replace_from_dictionary", + "ABBR = identify_parenthetical_phrases()(text)", + "parsers = [dedash(), titlecaps(), replace_acronyms(ABBR),", + " replace_from_dictionary(prefix='MeSH_')]", + "for f in parsers:", + " text = f(text)", + "print(text)" + ], + "category": ["standalone"], + "tags": [] + }, + { + "id": "Chatterbot", + "title": "Chatterbot", + "slogan": "A machine-learning based conversational dialog engine for creating chat bots", + "github": "gunthercox/ChatterBot", + "pip": "chatterbot", + "thumb": "https://chatterbot.readthedocs.io/en/stable/_images/banner.png", + "code_example": [ + "from chatterbot import ChatBot", + "from chatterbot.trainers import ListTrainer", + "# Create a new chat bot named Charlie", + "chatbot = ChatBot('Charlie')", + "trainer = ListTrainer(chatbot)", + "trainer.train([", + "'Hi, can I help you?',", + "'Sure, I would like to book a flight to Iceland.", + "'Your flight has been booked.'", + "])", + "", + "response = chatbot.get_response('I would like to book a flight.')" + ], + "category": ["conversational", "standalone"], + "tags": ["chatbots"] + }, { "id": "saber", "title": "saber", - "slogan": "deep-learning based tool for information extraction in the biomedical domain", + "slogan": "Deep-learning based tool for information extraction in the biomedical domain", "github": "BaderLab/saber", "pip": "saber", "thumb": "https://raw.githubusercontent.com/BaderLab/saber/master/docs/img/saber_logo.png", "code_example": [ - ">>> from saber.saber import Saber", - ">>> saber = Saber()", - ">>> saber.load('PRGE')", + "from saber.saber import Saber", + "saber = Saber()", + "saber.load('PRGE')", "saber.annotate('The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.')" ], - "category": ["research", "biomedical"], - "tags": ["keras"] + "category": ["research"], + "tags": ["keras", "biomedical"] + }, + { + "id": "alibi", + "title": "alibi", + "slogan": "Algorithms for monitoring and explaining machine learning models ", + "github": "SeldonIO/alibi", + "pip": "alibi", + "thumb": "https://docs.seldon.io/projects/alibi/en/v0.2.0/_static/Alibi_Logo.png", + "code_example": [ + ">>> from alibi.explainers import AnchorTabular", + ">>> explainer = AnchorTabular(predict_fn, feature_names)", + ">>> explainer.fit(X_train)", + ">>> explainer.explain(x)" + ], + "category": ["standalone", "research"], + "tags": [] }, - { "id": "spacymoji", "slogan": "Emoji handling and meta data as a spaCy pipeline component",