mirror of https://github.com/explosion/spaCy.git
* Add supersense sets to lexemes, from WordNet. Look-up via lemmatization.
This commit is contained in:
parent
aa3d06857e
commit
62cfcd76fe
|
@ -21,11 +21,17 @@ from pathlib import Path
|
|||
from shutil import copyfile
|
||||
from shutil import copytree
|
||||
import codecs
|
||||
from collections import defaultdict
|
||||
|
||||
from spacy.en import get_lex_props
|
||||
from spacy.en.lemmatizer import Lemmatizer
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.vocab import write_binary_vectors
|
||||
|
||||
from spacy.parts_of_speech import NOUN, VERB, ADJ
|
||||
|
||||
import spacy.senses
|
||||
|
||||
|
||||
def setup_tokenizer(lang_data_dir, tok_dir):
|
||||
if not tok_dir.exists():
|
||||
|
@ -72,6 +78,22 @@ def _read_probs(loc):
|
|||
return probs
|
||||
|
||||
|
||||
def _read_senses(loc):
|
||||
lexicon = defaultdict(lambda: defaultdict(list))
|
||||
sense_names = dict((s, i) for i, s in enumerate(spacy.senses.STRINGS))
|
||||
pos_ids = {'noun': NOUN, 'verb': VERB, 'adjective': ADJ}
|
||||
for line in codecs.open(str(loc), 'r', 'utf8'):
|
||||
sense_strings = line.split()
|
||||
word = sense_strings.pop(0)
|
||||
for sense in sense_strings:
|
||||
pos, sense = sense[3:].split('.')
|
||||
sense_name = '%s_%s' % (pos[0].upper(), sense.lower())
|
||||
if sense_name != 'N_tops':
|
||||
sense_id = sense_names[sense_name]
|
||||
lexicon[word][pos_ids[pos]].append(sense_id)
|
||||
return lexicon
|
||||
|
||||
|
||||
def setup_vocab(src_dir, dst_dir):
|
||||
if not dst_dir.exists():
|
||||
dst_dir.mkdir()
|
||||
|
@ -81,10 +103,12 @@ def setup_vocab(src_dir, dst_dir):
|
|||
write_binary_vectors(str(vectors_src), str(dst_dir / 'vec.bin'))
|
||||
vocab = Vocab(data_dir=None, get_lex_props=get_lex_props)
|
||||
clusters = _read_clusters(src_dir / 'clusters.txt')
|
||||
senses = _read_senses(src_dir / 'supersenses.txt')
|
||||
probs = _read_probs(src_dir / 'words.sgt.prob')
|
||||
for word in clusters:
|
||||
for word in set(clusters).union(set(senses)):
|
||||
if word not in probs:
|
||||
probs[word] = -17.0
|
||||
lemmatizer = Lemmatizer(str(src_dir / 'wordnet'), NOUN, VERB, ADJ)
|
||||
lexicon = []
|
||||
for word, prob in reversed(sorted(probs.items(), key=lambda item: item[1])):
|
||||
entry = get_lex_props(word)
|
||||
|
@ -94,6 +118,17 @@ def setup_vocab(src_dir, dst_dir):
|
|||
# Decode as a little-endian string, so that we can do & 15 to get
|
||||
# the first 4 bits. See _parse_features.pyx
|
||||
entry['cluster'] = int(cluster[::-1], 2)
|
||||
orth_senses = set()
|
||||
lemmas = []
|
||||
for pos in [NOUN, VERB, ADJ]:
|
||||
for lemma in lemmatizer(word.lower(), pos):
|
||||
lemmas.append(lemma)
|
||||
orth_senses.update(senses[lemma][pos])
|
||||
if word.lower() == 'dogging':
|
||||
print word
|
||||
print lemmas
|
||||
print [spacy.senses.STRINGS[si] for si in orth_senses]
|
||||
entry['senses'] = list(sorted(orth_senses))
|
||||
vocab[word] = entry
|
||||
vocab.dump(str(dst_dir / 'lexemes.bin'))
|
||||
vocab.strings.dump(str(dst_dir / 'strings.txt'))
|
||||
|
|
Loading…
Reference in New Issue