mirror of https://github.com/explosion/spaCy.git
Update docstrings and API docs for Span
This commit is contained in:
parent
23f9a3ccc8
commit
62ceec4fc6
|
@ -121,7 +121,7 @@ cdef class Span:
|
|||
return self.doc.merge(self.start_char, self.end_char, *args, **attributes)
|
||||
|
||||
def similarity(self, other):
|
||||
""" Make a semantic similarity estimate. The default estimate is cosine
|
||||
"""Make a semantic similarity estimate. The default estimate is cosine
|
||||
similarity using an average of word vectors.
|
||||
|
||||
other (object): The object to compare with. By default, accepts `Doc`,
|
||||
|
@ -168,14 +168,23 @@ cdef class Span:
|
|||
return self.doc[root.l_edge : root.r_edge + 1]
|
||||
|
||||
property has_vector:
|
||||
# TODO: docstring
|
||||
"""A boolean value indicating whether a word vector is associated with
|
||||
the object.
|
||||
|
||||
RETURNS (bool): Whether a word vector is associated with the object.
|
||||
"""
|
||||
def __get__(self):
|
||||
if 'has_vector' in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks['has_vector'](self)
|
||||
return any(token.has_vector for token in self)
|
||||
|
||||
property vector:
|
||||
# TODO: docstring
|
||||
"""A real-valued meaning representation. Defaults to an average of the
|
||||
token vectors.
|
||||
|
||||
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
||||
representing the span's semantics.
|
||||
"""
|
||||
def __get__(self):
|
||||
if 'vector' in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks['vector'](self)
|
||||
|
@ -184,7 +193,10 @@ cdef class Span:
|
|||
return self._vector
|
||||
|
||||
property vector_norm:
|
||||
# TODO: docstring
|
||||
"""The L2 norm of the document's vector representation.
|
||||
|
||||
RETURNS (float): The L2 norm of the vector representation.
|
||||
"""
|
||||
def __get__(self):
|
||||
if 'vector_norm' in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks['vector'](self)
|
||||
|
@ -206,7 +218,10 @@ cdef class Span:
|
|||
return sum([token.sentiment for token in self]) / len(self)
|
||||
|
||||
property text:
|
||||
# TODO: docstring
|
||||
"""A unicode representation of the span text.
|
||||
|
||||
RETURNS (unicode): The original verbatim text of the span.
|
||||
"""
|
||||
def __get__(self):
|
||||
text = self.text_with_ws
|
||||
if self[-1].whitespace_:
|
||||
|
@ -214,7 +229,11 @@ cdef class Span:
|
|||
return text
|
||||
|
||||
property text_with_ws:
|
||||
# TODO: docstring
|
||||
"""The text content of the span with a trailing whitespace character if
|
||||
the last token has one.
|
||||
|
||||
RETURNS (unicode): The text content of the span (with trailing whitespace).
|
||||
"""
|
||||
def __get__(self):
|
||||
return u''.join([t.text_with_ws for t in self])
|
||||
|
||||
|
|
|
@ -127,9 +127,7 @@ p
|
|||
| similarity using an average of word vectors.
|
||||
|
||||
+aside-code("Example").
|
||||
doc = nlp(u'apples and oranges')
|
||||
apples = doc[0]
|
||||
oranges = doc[1]
|
||||
apples, and, oranges = nlp(u'apples and oranges')
|
||||
apples_oranges = apples.similarity(oranges)
|
||||
oranges_apples = oranges.similarity(apples)
|
||||
assert apples_oranges == oranges_apples
|
||||
|
@ -165,49 +163,6 @@ p Retokenize the document, such that the span is merged into a single token.
|
|||
+cell #[code Token]
|
||||
+cell The newly merged token.
|
||||
|
||||
+h(2, "text") Span.text
|
||||
+tag property
|
||||
|
||||
+aside-code("Example").
|
||||
doc = nlp('Give it back! He pleaded.')
|
||||
assert doc[1:4].text == 'it back!'
|
||||
|
||||
p A unicode representation of the span text.
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell unicode
|
||||
+cell The original verbatim text of the span.
|
||||
|
||||
+h(2, "text_with_ws") Span.text_with_ws
|
||||
+tag property
|
||||
|
||||
+aside-code("Example").
|
||||
doc = nlp('Give it back! He pleaded.')
|
||||
assert doc[1:4].text_with_ws == 'it back! '
|
||||
|
||||
p
|
||||
| The text content of the span with a trailing whitespace character if the
|
||||
| last token has one.
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell unicode
|
||||
+cell The text content of the span (with trailing whitespace).
|
||||
|
||||
+h(2, "sent") Span.sent
|
||||
+tag property
|
||||
|
||||
p The sentence span that this span is a part of.
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell #[code Span]
|
||||
+cell The sentence this is part of.
|
||||
|
||||
+h(2, "root") Span.root
|
||||
+tag property
|
||||
|
||||
|
@ -262,6 +217,56 @@ p Tokens that descend from tokens in the span, but fall outside it.
|
|||
+cell #[code Token]
|
||||
+cell A descendant of a token within the span.
|
||||
|
||||
+h(2, "has_vector") Span.has_vector
|
||||
+tag property
|
||||
+tag requires model
|
||||
|
||||
p
|
||||
| A boolean value indicating whether a word vector is associated with the
|
||||
| object.
|
||||
|
||||
+aside-code("Example").
|
||||
apple = nlp(u'apple')
|
||||
assert apple.has_vector
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell bool
|
||||
+cell Whether the span has a vector data attached.
|
||||
|
||||
+h(2, "vector") Span.vector
|
||||
+tag property
|
||||
+tag requires model
|
||||
|
||||
p
|
||||
| A real-valued meaning representation. Defaults to an average of the
|
||||
| token vectors.
|
||||
|
||||
+aside-code("Example").
|
||||
apple = nlp(u'apple')
|
||||
(apple.vector.dtype, apple.vector.shape)
|
||||
# (dtype('float32'), (300,))
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell #[code numpy.ndarray[ndim=1, dtype='float32']]
|
||||
+cell A 1D numpy array representing the span's semantics.
|
||||
|
||||
+h(2, "vector_norm") Span.vector_norm
|
||||
+tag property
|
||||
+tag requires model
|
||||
|
||||
p
|
||||
| The L2 norm of the span's vector representation.
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell float
|
||||
+cell The L2 norm of the vector representation.
|
||||
|
||||
+h(2, "attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
|
@ -270,6 +275,11 @@ p Tokens that descend from tokens in the span, but fall outside it.
|
|||
+cell #[code Doc]
|
||||
+cell The parent document.
|
||||
|
||||
+row
|
||||
+cell #[code sent]
|
||||
+cell #[code Span]
|
||||
+cell The sentence span that this span is a part of.
|
||||
|
||||
+row
|
||||
+cell #[code start]
|
||||
+cell int
|
||||
|
@ -290,6 +300,18 @@ p Tokens that descend from tokens in the span, but fall outside it.
|
|||
+cell int
|
||||
+cell The character offset for the end of the span.
|
||||
|
||||
+row
|
||||
+cell #[code text]
|
||||
+cell unicode
|
||||
+cell A unicode representation of the span text.
|
||||
|
||||
+row
|
||||
+cell #[code text_with_ws]
|
||||
+cell unicode
|
||||
+cell
|
||||
| The text content of the span with a trailing whitespace character
|
||||
| if the last token has one.
|
||||
|
||||
+row
|
||||
+cell #[code label]
|
||||
+cell int
|
||||
|
|
Loading…
Reference in New Issue