diff --git a/spacy/cli/train.py b/spacy/cli/train.py index 19880295a..4ec69bd0c 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -38,7 +38,6 @@ from .. import about conv_depth=("Depth of CNN layers of Tok2Vec component", "option", "cd", int), cnn_window=("Window size for CNN layers of Tok2Vec component", "option", "cW", int), cnn_pieces=("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int), - use_chars=("Whether to use character-based embedding of Tok2Vec component", "flag", "chr", bool), bilstm_depth=("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int), embed_rows=("Number of embedding rows of Tok2Vec component", "option", "er", int), n_iter=("Number of iterations", "option", "n", int), @@ -78,7 +77,6 @@ def train( conv_depth=4, cnn_window=1, cnn_pieces=3, - use_chars=False, bilstm_depth=0, embed_rows=2000, n_iter=30, @@ -294,7 +292,6 @@ def train( cfg["cnn_maxout_pieces"] = cnn_pieces cfg["embed_size"] = embed_rows cfg["conv_window"] = cnn_window - cfg["subword_features"] = not use_chars optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg) nlp._optimizer = None diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md index b97308aab..0d2ff36b8 100644 --- a/website/docs/api/cli.md +++ b/website/docs/api/cli.md @@ -384,7 +384,6 @@ $ python -m spacy train [lang] [output_path] [train_path] [dev_path] | `--conv-depth`, `-cd` 2.2.4 | option | Depth of CNN layers of `Tok2Vec` component. | | `--cnn-window`, `-cW` 2.2.4 | option | Window size for CNN layers of `Tok2Vec` component. | | `--cnn-pieces`, `-cP` 2.2.4 | option | Maxout size for CNN layers of `Tok2Vec` component. | -| `--use-chars`, `-chr` 2.2.4 | flag | Whether to use character-based embedding of `Tok2Vec` component. | | `--bilstm-depth`, `-lstm` 2.2.4 | option | Depth of BiLSTM layers of `Tok2Vec` component (requires PyTorch). | | `--embed-rows`, `-er` 2.2.4 | option | Number of embedding rows of `Tok2Vec` component. | | `--noise-level`, `-nl` | option | Float indicating the amount of corruption for data augmentation. |