Move vector pruning command into spacy vocab cli tool

This commit is contained in:
Matthew Honnibal 2017-10-31 19:10:01 +01:00
parent 77d8f5de9a
commit 59203a2e8a
1 changed files with 14 additions and 8 deletions

View File

@ -7,6 +7,7 @@ import spacy
import numpy
from pathlib import Path
from ..vectors import Vectors
from ..util import prints, ensure_path
@ -16,8 +17,12 @@ from ..util import prints, ensure_path
lexemes_loc=("location of JSONL-formatted lexical data", "positional",
None, Path),
vectors_loc=("optional: location of vectors data, as numpy .npz",
"positional", None, str))
def make_vocab(cmd, lang, output_dir, lexemes_loc, vectors_loc=None):
"positional", None, str),
prune_vectors=("optional: number of vectors to prune to.",
"option", "V", int)
)
def make_vocab(cmd, lang, output_dir, lexemes_loc,
vectors_loc=None, prune_vectors=0):
"""Compile a vocabulary from a lexicon jsonl file and word vectors."""
if not lexemes_loc.exists():
prints(lexemes_loc, title="Can't find lexical data", exits=1)
@ -26,7 +31,6 @@ def make_vocab(cmd, lang, output_dir, lexemes_loc, vectors_loc=None):
for word in nlp.vocab:
word.rank = 0
lex_added = 0
vec_added = 0
with lexemes_loc.open() as file_:
for line in file_:
if line.strip():
@ -39,16 +43,18 @@ def make_vocab(cmd, lang, output_dir, lexemes_loc, vectors_loc=None):
assert lex.rank == attrs['id']
lex_added += 1
if vectors_loc is not None:
vector_data = numpy.load(open(vectors_loc, 'rb'))
nlp.vocab.clear_vectors(width=vector_data.shape[1])
vector_data = numpy.load(vectors_loc.open('rb'))
nlp.vocab.vectors = Vectors(data=vector_data)
for word in nlp.vocab:
if word.rank:
nlp.vocab.vectors.add(word.orth_, row=word.rank,
vector=vector_data[word.rank])
vec_added += 1
nlp.vocab.vectors.add(word.orth, row=word.rank)
if prune_vectors is not None:
remap = nlp.vocab.prune_vectors(prune_vectors)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
vec_added = len(nlp.vocab.vectors)
prints("{} entries, {} vectors".format(lex_added, vec_added), output_dir,
title="Sucessfully compiled vocab and vectors, and saved model")
return nlp