Tok2Vec: extract-embed-encode (#5102)

* avoid changing original config

* fix elif structure, batch with just int crashes otherwise

* tok2vec example with doc2feats, encode and embed architectures

* further clean up MultiHashEmbed

* further generalize Tok2Vec to work with extract-embed-encode parts

* avoid initializing the charembed layer with Docs (for now ?)

* small fixes for bilstm config (still does not run)

* rename to core layer

* move new configs

* walk model to set nI instead of using core ref

* fix senter overfitting test to be more similar to the training data (avoid flakey behaviour)
This commit is contained in:
Sofie Van Landeghem 2020-03-08 13:23:18 +01:00 committed by GitHub
parent c95ce96c44
commit 5847be6022
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 227 additions and 141 deletions

View File

@ -62,4 +62,4 @@ width = 96
depth = 4
embed_size = 2000
subword_features = true
char_embed = false
maxout_pieces = 3

View File

@ -0,0 +1,65 @@
[training]
use_gpu = -1
limit = 0
dropout = 0.2
patience = 10000
eval_frequency = 200
scores = ["ents_f"]
score_weights = {"ents_f": 1}
orth_variant_level = 0.0
gold_preproc = true
max_length = 0
batch_size = 25
[optimizer]
@optimizers = "Adam.v1"
learn_rate = 0.001
beta1 = 0.9
beta2 = 0.999
[nlp]
lang = "en"
vectors = null
[nlp.pipeline.tok2vec]
factory = "tok2vec"
[nlp.pipeline.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"
[nlp.pipeline.tok2vec.model.extract]
@architectures = "spacy.CharacterEmbed.v1"
width = 96
nM = 64
nC = 8
rows = 2000
columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
[nlp.pipeline.tok2vec.model.extract.features]
@architectures = "spacy.Doc2Feats.v1"
columns = ${nlp.pipeline.tok2vec.model.extract:columns}
[nlp.pipeline.tok2vec.model.embed]
@architectures = "spacy.LayerNormalizedMaxout.v1"
width = ${nlp.pipeline.tok2vec.model.extract:width}
maxout_pieces = 4
[nlp.pipeline.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = ${nlp.pipeline.tok2vec.model.extract:width}
window_size = 1
maxout_pieces = 2
depth = 2
[nlp.pipeline.ner]
factory = "ner"
[nlp.pipeline.ner.model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 6
hidden_width = 64
maxout_pieces = 2
[nlp.pipeline.ner.model.tok2vec]
@architectures = "spacy.Tok2VecTensors.v1"
width = ${nlp.pipeline.tok2vec.model.extract:width}

View File

@ -0,0 +1,65 @@
[training]
use_gpu = -1
limit = 0
dropout = 0.2
patience = 10000
eval_frequency = 200
scores = ["ents_f"]
score_weights = {"ents_f": 1}
orth_variant_level = 0.0
gold_preproc = true
max_length = 0
batch_size = 25
[optimizer]
@optimizers = "Adam.v1"
learn_rate = 0.001
beta1 = 0.9
beta2 = 0.999
[nlp]
lang = "en"
vectors = null
[nlp.pipeline.tok2vec]
factory = "tok2vec"
[nlp.pipeline.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"
[nlp.pipeline.tok2vec.model.extract]
@architectures = "spacy.Doc2Feats.v1"
columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
[nlp.pipeline.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v1"
columns = ${nlp.pipeline.tok2vec.model.extract:columns}
width = 96
rows = 2000
use_subwords = true
pretrained_vectors = null
[nlp.pipeline.tok2vec.model.embed.mix]
@architectures = "spacy.LayerNormalizedMaxout.v1"
width = ${nlp.pipeline.tok2vec.model.embed:width}
maxout_pieces = 3
[nlp.pipeline.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = ${nlp.pipeline.tok2vec.model.embed:width}
window_size = 1
maxout_pieces = 3
depth = 2
[nlp.pipeline.ner]
factory = "ner"
[nlp.pipeline.ner.model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 6
hidden_width = 64
maxout_pieces = 2
[nlp.pipeline.ner.model.tok2vec]
@architectures = "spacy.Tok2VecTensors.v1"
width = ${nlp.pipeline.tok2vec.model.embed:width}

View File

@ -337,13 +337,14 @@ class Language(object):
default_config = self.defaults.get(name, None)
# transform the model's config to an actual Model
factory_cfg = dict(config)
model_cfg = None
if "model" in config:
model_cfg = config["model"]
if "model" in factory_cfg:
model_cfg = factory_cfg["model"]
if not isinstance(model_cfg, dict):
warnings.warn(Warnings.W099.format(type=type(model_cfg), pipe=name))
model_cfg = None
del config["model"]
del factory_cfg["model"]
if model_cfg is None and default_config is not None:
warnings.warn(Warnings.W098.format(name=name))
model_cfg = default_config["model"]
@ -353,7 +354,7 @@ class Language(object):
model = registry.make_from_config({"model": model_cfg}, validate=True)[
"model"
]
return factory(self, model, **config)
return factory(self, model, **factory_cfg)
def add_pipe(
self, component, name=None, before=None, after=None, first=None, last=None

View File

@ -21,7 +21,7 @@ def init(model, X=None, Y=None):
def forward(model, docs, is_train):
if not docs:
if docs is None:
return []
ids = []
output = []

View File

@ -4,7 +4,7 @@ from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
from ... import util
from ...util import registry, make_layer
from ...util import registry
from ...ml import _character_embed
from ...pipeline.tok2vec import Tok2VecListener
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
@ -23,15 +23,14 @@ def get_vocab_vectors(name):
@registry.architectures.register("spacy.Tok2Vec.v1")
def Tok2Vec(config):
doc2feats = make_layer(config["@doc2feats"])
embed = make_layer(config["@embed"])
encode = make_layer(config["@encode"])
def Tok2Vec(extract, embed, encode):
field_size = 0
if encode.has_attr("receptive_field"):
if encode.attrs.get("receptive_field", None):
field_size = encode.attrs["receptive_field"]
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
tok2vec.attrs["cfg"] = config
with Model.define_operators({">>": chain, "|": concatenate}):
if extract.has_dim("nO"):
_set_dims(embed, "nI", extract.get_dim("nO"))
tok2vec = extract >> with_array(embed >> encode, pad=field_size)
tok2vec.set_dim("nO", encode.get_dim("nO"))
tok2vec.set_ref("embed", embed)
tok2vec.set_ref("encode", encode)
@ -39,8 +38,7 @@ def Tok2Vec(config):
@registry.architectures.register("spacy.Doc2Feats.v1")
def Doc2Feats(config):
columns = config["columns"]
def Doc2Feats(columns):
return FeatureExtractor(columns)
@ -79,8 +77,8 @@ def hash_charembed_cnn(
maxout_pieces,
window_size,
subword_features,
nM=0,
nC=0,
nM,
nC,
):
# Allows using character embeddings by setting nC, nM and char_embed=True
return build_Tok2Vec_model(
@ -100,7 +98,7 @@ def hash_charembed_cnn(
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
def hash_embed_bilstm_v1(
pretrained_vectors, width, depth, embed_size, subword_features
pretrained_vectors, width, depth, embed_size, subword_features, maxout_pieces
):
# Does not use character embeddings: set to False by default
return build_Tok2Vec_model(
@ -109,7 +107,7 @@ def hash_embed_bilstm_v1(
pretrained_vectors=pretrained_vectors,
bilstm_depth=depth,
conv_depth=0,
maxout_pieces=0,
maxout_pieces=maxout_pieces,
window_size=1,
subword_features=subword_features,
char_embed=False,
@ -120,7 +118,7 @@ def hash_embed_bilstm_v1(
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
def hash_char_embed_bilstm_v1(
pretrained_vectors, width, depth, embed_size, subword_features, nM=0, nC=0
pretrained_vectors, width, depth, embed_size, subword_features, nM, nC, maxout_pieces
):
# Allows using character embeddings by setting nC, nM and char_embed=True
return build_Tok2Vec_model(
@ -129,7 +127,7 @@ def hash_char_embed_bilstm_v1(
pretrained_vectors=pretrained_vectors,
bilstm_depth=depth,
conv_depth=0,
maxout_pieces=0,
maxout_pieces=maxout_pieces,
window_size=1,
subword_features=subword_features,
char_embed=True,
@ -138,104 +136,99 @@ def hash_char_embed_bilstm_v1(
)
@registry.architectures.register("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(config):
# For backwards compatibility with models before the architecture registry,
# we have to be careful to get exactly the same model structure. One subtle
# trick is that when we define concatenation with the operator, the operator
# is actually binary associative. So when we write (a | b | c), we're actually
# getting concatenate(concatenate(a, b), c). That's why the implementation
# is a bit ugly here.
cols = config["columns"]
width = config["width"]
rows = config["rows"]
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
def LayerNormalizedMaxout(width, maxout_pieces):
return Maxout(
nO=width,
nP=maxout_pieces,
dropout=0.0,
normalize=True,
)
norm = HashEmbed(width, rows, column=cols.index("NORM"))
if config["use_subwords"]:
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"))
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"))
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"))
if config.get("@pretrained_vectors"):
glove = make_layer(config["@pretrained_vectors"])
mix = make_layer(config["@mix"])
@registry.architectures.register("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(columns, width, rows, use_subwords, pretrained_vectors, mix):
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"))
if use_subwords:
prefix = HashEmbed(nO=width, nV=rows // 2, column=columns.index("PREFIX"))
suffix = HashEmbed(nO=width, nV=rows // 2, column=columns.index("SUFFIX"))
shape = HashEmbed(nO=width, nV=rows // 2, column=columns.index("SHAPE"))
if pretrained_vectors:
glove = StaticVectors(
vectors=pretrained_vectors.data,
nO=width,
column=columns.index(ID),
dropout=0.0,
)
with Model.define_operators({">>": chain, "|": concatenate}):
if config["use_subwords"] and config["@pretrained_vectors"]:
mix._layers[0].set_dim("nI", width * 5)
layer = uniqued(
(glove | norm | prefix | suffix | shape) >> mix,
column=cols.index("ORTH"),
)
elif config["use_subwords"]:
mix._layers[0].set_dim("nI", width * 4)
layer = uniqued(
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
)
elif config["@pretrained_vectors"]:
mix._layers[0].set_dim("nI", width * 2)
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"))
if not use_subwords and not pretrained_vectors:
embed_layer = norm
else:
layer = norm
layer.attrs["cfg"] = config
return layer
if use_subwords and pretrained_vectors:
nr_columns = 5
concat_columns = glove | norm | prefix | suffix | shape
elif use_subwords:
nr_columns = 4
concat_columns = norm | prefix | suffix | shape
else:
nr_columns = 2
concat_columns = glove | norm
_set_dims(mix, "nI", width * nr_columns)
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
return embed_layer
def _set_dims(model, name, value):
# Loop through the model to set a specific dimension if its unset on any layer.
for node in model.walk():
if node.has_dim(name) is None:
node.set_dim(name, value)
@registry.architectures.register("spacy.CharacterEmbed.v1")
def CharacterEmbed(config):
width = config["width"]
chars = config["chars"]
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
other_tables = make_layer(config["@embed_features"])
mix = make_layer(config["@mix"])
model = chain(concatenate(chr_embed, other_tables), mix)
model.attrs["cfg"] = config
return model
def CharacterEmbed(columns, width, rows, nM, nC, features):
norm = HashEmbed(nO=width, nV=rows, column=columns.index("NORM"))
chr_embed = _character_embed.CharacterEmbed(nM=nM, nC=nC)
with Model.define_operators({">>": chain, "|": concatenate}):
embed_layer = chr_embed | features >> with_array(norm)
embed_layer.set_dim("nO", nM * nC + width)
return embed_layer
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
def MaxoutWindowEncoder(config):
nO = config["width"]
nW = config["window_size"]
nP = config["pieces"]
depth = config["depth"]
cnn = (
expand_window(window_size=nW),
Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True),
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
cnn = chain(
expand_window(window_size=window_size),
Maxout(nO=width, nI=width * ((window_size * 2) + 1), nP=maxout_pieces, dropout=0.0, normalize=True),
)
model = clone(residual(cnn), depth)
model.set_dim("nO", nO)
model.attrs["receptive_field"] = nW * depth
model.set_dim("nO", width)
model.attrs["receptive_field"] = window_size * depth
return model
@registry.architectures.register("spacy.MishWindowEncoder.v1")
def MishWindowEncoder(config):
nO = config["width"]
nW = config["window_size"]
depth = config["depth"]
def MishWindowEncoder(width, window_size, depth):
cnn = chain(
expand_window(window_size=nW),
Mish(nO=nO, nI=nO * ((nW * 2) + 1)),
LayerNorm(nO),
expand_window(window_size=window_size),
Mish(nO=width, nI=width * ((window_size * 2) + 1)),
LayerNorm(width),
)
model = clone(residual(cnn), depth)
model.set_dim("nO", nO)
model.set_dim("nO", width)
return model
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
def TorchBiLSTMEncoder(config):
def TorchBiLSTMEncoder(width, depth):
import torch.nn
# TODO FIX
from thinc.api import PyTorchRNNWrapper
width = config["width"]
depth = config["depth"]
if depth == 0:
return noop()
return with_padded(
@ -243,40 +236,6 @@ def TorchBiLSTMEncoder(config):
)
# TODO: update
_EXAMPLE_CONFIG = {
"@doc2feats": {
"arch": "Doc2Feats",
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
},
"@embed": {
"arch": "spacy.MultiHashEmbed.v1",
"config": {
"width": 96,
"rows": 2000,
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
"use_subwords": True,
"@pretrained_vectors": {
"arch": "TransformedStaticVectors",
"config": {
"vectors_name": "en_vectors_web_lg.vectors",
"width": 96,
"column": 0,
},
},
"@mix": {
"arch": "LayerNormalizedMaxout",
"config": {"width": 96, "pieces": 3},
},
},
},
"@encode": {
"arch": "MaxoutWindowEncode",
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
},
}
def build_Tok2Vec_model(
width,
embed_size,

View File

View File

@ -131,9 +131,10 @@ class Tok2Vec(Pipe):
get_examples (function): Function returning example training data.
pipeline (list): The pipeline the model is part of.
"""
# TODO: use examples instead ?
docs = [Doc(Vocab(), words=["hello"])]
self.model.initialize(X=docs)
# TODO: charembed does not play nicely with dim inference yet
# docs = [Doc(Vocab(), words=["hello"])]
# self.model.initialize(X=docs)
self.model.initialize()
link_vectors_to_models(self.vocab)

View File

@ -36,17 +36,17 @@ def test_overfitting_IO():
assert losses["senter"] < 0.0001
# test the trained model
test_text = "I like eggs. There is ham. She likes ham."
test_text = "I like purple eggs. They eat ham. You like yellow eggs."
doc = nlp(test_text)
gold_sent_starts = [0] * 12
gold_sent_starts = [0] * 14
gold_sent_starts[0] = 1
gold_sent_starts[4] = 1
gold_sent_starts[8] = 1
assert gold_sent_starts == [int(t.is_sent_start) for t in doc]
gold_sent_starts[5] = 1
gold_sent_starts[9] = 1
assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert gold_sent_starts == [int(t.is_sent_start) for t in doc2]
assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts

View File

@ -79,11 +79,6 @@ def set_lang_class(name, cls):
registry.languages.register(name, func=cls)
def make_layer(arch_config):
arch_func = registry.architectures.get(arch_config["arch"])
return arch_func(arch_config["config"])
def ensure_path(path):
"""Ensure string is converted to a Path.
@ -563,7 +558,7 @@ def minibatch_by_words(examples, size, tuples=True, count_words=len):
"""Create minibatches of a given number of words."""
if isinstance(size, int):
size_ = itertools.repeat(size)
if isinstance(size, List):
elif isinstance(size, List):
size_ = iter(size)
else:
size_ = size