diff --git a/website/docs/api/transformer.md b/website/docs/api/transformer.md index 0b38c2e8d..5ac95cb29 100644 --- a/website/docs/api/transformer.md +++ b/website/docs/api/transformer.md @@ -102,14 +102,14 @@ attribute. You can also provide a callback to set additional annotations. In your application, you would normally use a shortcut for this and instantiate the component using its string name and [`nlp.add_pipe`](/api/language#create_pipe). -| Name | Description | -| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `vocab` | The shared vocabulary. ~~Vocab~~ | -| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Usually you will want to use the [TransformerModel](/api/architectures#TransformerModel) layer for this. ~~Model[List[Doc], FullTransformerBatch]~~ | -| `annotation_setter` | Function that takes a batch of `Doc` objects and transformer outputs and stores the annotations on the `Doc`. By default, the function `trfdata_setter` sets the `Doc._.trf_data` attribute. ~~Callable[[List[Doc], FullTransformerBatch], None]~~ | -| _keyword-only_ | | -| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | -| `max_batch_items` | Maximum size of a padded batch. Defaults to `128*32`. ~~int~~ | +| Name | Description | +| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Usually you will want to use the [TransformerModel](/api/architectures#TransformerModel) layer for this. ~~Model[List[Doc], FullTransformerBatch]~~ | +| `annotation_setter` | Function that takes a batch of `Doc` objects and transformer outputs and stores the annotations on the `Doc`. The `Doc._.trf_data` attribute is set prior to calling the callback. By default, no additional annotations are set. ~~Callable[[List[Doc], FullTransformerBatch], None]~~ | +| _keyword-only_ | | +| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | +| `max_batch_items` | Maximum size of a padded batch. Defaults to `128*32`. ~~int~~ | ## Transformer.\_\_call\_\_ {#call tag="method"} @@ -532,7 +532,7 @@ You can register custom annotation setters using the > def setter(docs: List[Doc], trf_data: FullTransformerBatch) -> None: > pass > -> return setter +> return setter > ``` | Name | Description |