Merge pull request #6802 from jumasheff/add-ky

This commit is contained in:
Ines Montani 2021-01-27 13:02:54 +11:00 committed by GitHub
commit 560b7acece
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 433 additions and 0 deletions

106
.github/contributors/jumasheff.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Murat Jumashev |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 25.01.2021 |
| GitHub username | jumasheff |
| Website (optional) | |

31
spacy/lang/ky/__init__.py Normal file
View File

@ -0,0 +1,31 @@
# coding: utf8
from __future__ import unicode_literals
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...attrs import LANG
from ...language import Language
from ...util import update_exc
class KyrgyzDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: "ky"
lex_attr_getters.update(LEX_ATTRS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
infixes = tuple(TOKENIZER_INFIXES)
stop_words = STOP_WORDS
class Kyrgyz(Language):
lang = "ky"
Defaults = KyrgyzDefaults
__all__ = ["Kyrgyz"]

19
spacy/lang/ky/examples.py Normal file
View File

@ -0,0 +1,19 @@
# coding: utf8
from __future__ import unicode_literals
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.ky.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Apple Улуу Британия стартабын $1 миллиардга сатып алууну көздөөдө.",
"Автоном автомобилдерди камсыздоо жоопкерчилиги өндүрүүчүлөргө артылды.",
"Сан-Франциско тротуар менен жүрүүчү робот-курьерлерге тыю салууну караштырууда.",
"Лондон - Улуу Британияда жайгашкан ири шаар.",
"Кайдасың?",
"Франциянын президенти ким?",
"Америка Кошмо Штаттарынын борбор калаасы кайсы шаар?",
"Барак Обама качан төрөлгөн?",
]

View File

@ -0,0 +1,51 @@
# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM
_num_words = [
"нөл",
"ноль",
"бир",
"эки",
"үч",
"төрт",
"беш",
"алты",
"жети",
"сегиз",
"тогуз",
"он",
"жыйырма",
"отуз",
"кырк",
"элүү",
"алтымыш",
"жетмиш",
"сексен",
"токсон",
"жүз",
"миң",
"миллион",
"миллиард",
"триллион",
"триллиард",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text in _num_words:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -0,0 +1,24 @@
# coding: utf8
from __future__ import unicode_literals
from ..char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER, CONCAT_QUOTES, HYPHENS
from ..char_classes import LIST_ELLIPSES, LIST_ICONS
_hyphens_no_dash = HYPHENS.replace("-", "").strip("|").replace("||", "")
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[{al}])\.(?=[{au}])".format(al=ALPHA_LOWER, au=ALPHA_UPPER),
r"(?<=[{a}])[,!?/()]+(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}{q}])[:<>=](?=[{a}])".format(a=ALPHA, q=CONCAT_QUOTES),
r"(?<=[{a}])--(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])([{q}\)\]\(\[])(?=[\-{a}])".format(a=ALPHA, q=CONCAT_QUOTES),
r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=_hyphens_no_dash),
r"(?<=[0-9])-(?=[{a}])".format(a=ALPHA),
r"(?<=[0-9])-(?=[0-9])",
]
)
TOKENIZER_INFIXES = _infixes

View File

@ -0,0 +1,45 @@
# encoding: utf8
from __future__ import unicode_literals
STOP_WORDS = set(
"""
ага адам айтты айтымында айтып ал алар
алардын алган алуу алып анда андан аны
анын ар
бар басма баш башка башкы башчысы берген
биз билдирген билдирди бир биринчи бирок
бишкек болгон болот болсо болуп боюнча
буга бул
гана
да дагы деген деди деп
жана жатат жаткан жаңы же жогорку жок жол
жолу
кабыл калган кандай карата каршы катары
келген керек кийин кол кылмыш кыргыз
күнү көп
маалымат мамлекеттик мен менен миң
мурдагы мыйзам мындай мүмкүн
ошол ошондой
сүрөт сөз
тарабынан турган тууралуу
укук учурда
чейин чек
экенин эки эл эле эмес эми эч
үч үчүн
өз
""".split()
)

View File

@ -0,0 +1,55 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import ORTH, LEMMA, NORM
_exc = {}
_abbrev_exc = [
# Weekdays abbreviations
{ORTH: "дүй", LEMMA: "дүйшөмбү"},
{ORTH: "шей", LEMMA: "шейшемби"},
{ORTH: "шар", LEMMA: "шаршемби"},
{ORTH: "бей", LEMMA: "бейшемби"},
{ORTH: "жум", LEMMA: "жума"},
{ORTH: "ишм", LEMMA: "ишемби"},
{ORTH: "жек", LEMMA: "жекшемби"},
# Months abbreviations
{ORTH: "янв", LEMMA: "январь"},
{ORTH: "фев", LEMMA: "февраль"},
{ORTH: "мар", LEMMA: "март"},
{ORTH: "апр", LEMMA: "апрель"},
{ORTH: "июн", LEMMA: "июнь"},
{ORTH: "июл", LEMMA: "июль"},
{ORTH: "авг", LEMMA: "август"},
{ORTH: "сен", LEMMA: "сентябрь"},
{ORTH: "окт", LEMMA: "октябрь"},
{ORTH: "ноя", LEMMA: "ноябрь"},
{ORTH: "дек", LEMMA: "декабрь"},
# Number abbreviations
{ORTH: "млрд", LEMMA: "миллиард"},
{ORTH: "млн", LEMMA: "миллион"},
]
for abbr in _abbrev_exc:
for orth in (abbr[ORTH], abbr[ORTH].capitalize(), abbr[ORTH].upper()):
_exc[orth] = [{ORTH: orth, LEMMA: abbr[LEMMA], NORM: abbr[LEMMA]}]
_exc[orth + "."] = [{ORTH: orth + ".", LEMMA: abbr[LEMMA], NORM: abbr[LEMMA]}]
for exc_data in [ # "etc." abbreviations
{ORTH: "ж.б.у.с.", NORM: "жана башка ушул сыяктуу"},
{ORTH: "ж.б.", NORM: "жана башка"},
{ORTH: "ж.", NORM: "жыл"},
{ORTH: "б.з.ч.", NORM: "биздин заманга чейин"},
{ORTH: "б.з.", NORM: "биздин заман"},
{ORTH: "кк.", NORM: "кылымдар"},
{ORTH: "жж.", NORM: "жылдар"},
{ORTH: "к.", NORM: "кылым"},
{ORTH: "көч.", NORM: "көчөсү"},
{ORTH: "м-н", NORM: "менен"},
{ORTH: "б-ча", NORM: "боюнча"},
]:
exc_data[LEMMA] = exc_data[NORM]
_exc[exc_data[ORTH]] = [exc_data]
TOKENIZER_EXCEPTIONS = _exc

View File

@ -262,6 +262,11 @@ def tt_tokenizer():
return get_lang_class("tt").Defaults.create_tokenizer() return get_lang_class("tt").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def ky_tokenizer():
return get_lang_class("ky").Defaults.create_tokenizer()
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def uk_tokenizer(): def uk_tokenizer():
pytest.importorskip("pymorphy2") pytest.importorskip("pymorphy2")

View File

View File

@ -0,0 +1,91 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
INFIX_HYPHEN_TESTS = [
("Бала-чака жакшыбы?", "Бала-чака жакшыбы ?".split()),
("Кыз-келиндер кийими.", "Кыз-келиндер кийими .".split()),
]
PUNC_INSIDE_WORDS_TESTS = [
(
"Пассажир саны - 2,13 млн — киши/күнүнө (2010), 783,9 млн. киши/жылына.",
"Пассажир саны - 2,13 млн — киши / күнүнө ( 2010 ) ,"
" 783,9 млн. киши / жылына .".split(),
),
('То"кой', 'То " кой'.split()),
]
MIXED_ORDINAL_NUMS_TESTS = [
("Эртең 22-январь...", "Эртең 22 - январь ...".split())
]
ABBREV_TESTS = [
("Маселе б-ча эртең келет", "Маселе б-ча эртең келет".split()),
("Ахунбаев көч. турат.", "Ахунбаев көч. турат .".split()),
("«3-жылы (б.з.ч.) туулган", "« 3 - жылы ( б.з.ч. ) туулган".split()),
("Жүгөрү ж.б. дандар колдонулат", "Жүгөрү ж.б. дандар колдонулат".split()),
("3-4 кк. курулган.", "3 - 4 кк. курулган .".split()),
]
NAME_ABBREV_TESTS = [
("М.Жумаш", "М.Жумаш".split()),
("М.жумаш", "М.жумаш".split()),
("м.Жумаш", "м . Жумаш".split()),
("Жумаш М.Н.", "Жумаш М.Н.".split()),
("Жумаш.", "Жумаш .".split()),
]
TYPOS_IN_PUNC_TESTS = [
("«3-жылда , туулган", "« 3 - жылда , туулган".split()),
("«3-жылда,туулган", "« 3 - жылда , туулган".split()),
("«3-жылда,туулган.", "« 3 - жылда , туулган .".split()),
("Ал иштейт(качан?)", "Ал иштейт ( качан ? )".split()),
("Ал (качан?)иштейт", "Ал ( качан ?) иштейт".split()), # "?)" => "?)" or "? )"
]
LONG_TEXTS_TESTS = [
(
"Алыскы өлкөлөргө аздыр-көптүр татаалыраак жүрүштөргө чыккандар "
"азыраак: ал бир топ кымбат жана логистика маселесинин айынан "
"кыйла татаал. Мисалы, январдагы майрамдарда Мароккого үчүнчү "
"категориядагы маршрутка (100 чакырымдан кем эмес) барып "
"келгенге аракет кылдык.",
"Алыскы өлкөлөргө аздыр-көптүр татаалыраак жүрүштөргө чыккандар "
"азыраак : ал бир топ кымбат жана логистика маселесинин айынан "
"кыйла татаал . Мисалы , январдагы майрамдарда Мароккого үчүнчү "
"категориядагы маршрутка ( 100 чакырымдан кем эмес ) барып "
"келгенге аракет кылдык .".split(),
)
]
TESTCASES = (
INFIX_HYPHEN_TESTS
+ PUNC_INSIDE_WORDS_TESTS
+ MIXED_ORDINAL_NUMS_TESTS
+ ABBREV_TESTS
+ NAME_ABBREV_TESTS
+ LONG_TEXTS_TESTS
+ TYPOS_IN_PUNC_TESTS
)
NORM_TESTCASES = [
(
"ит, мышык ж.б.у.с. үй жаныбарлары.",
["ит", ",", "мышык", "жана башка ушул сыяктуу", "үй", "жаныбарлары", "."],
)
]
@pytest.mark.parametrize("text,expected_tokens", TESTCASES)
def test_ky_tokenizer_handles_testcases(ky_tokenizer, text, expected_tokens):
tokens = [token.text for token in ky_tokenizer(text) if not token.is_space]
assert expected_tokens == tokens
@pytest.mark.parametrize("text,norms", NORM_TESTCASES)
def test_ky_tokenizer_handles_norm_exceptions(ky_tokenizer, text, norms):
tokens = ky_tokenizer(text)
assert [token.norm_ for token in tokens] == norms

View File

@ -151,6 +151,12 @@
{ "code": "fa", "name": "Persian", "has_examples": true }, { "code": "fa", "name": "Persian", "has_examples": true },
{ "code": "ur", "name": "Urdu", "example": "یہ ایک جملہ ہے", "has_examples": true }, { "code": "ur", "name": "Urdu", "example": "یہ ایک جملہ ہے", "has_examples": true },
{ "code": "tt", "name": "Tatar", "has_examples": true }, { "code": "tt", "name": "Tatar", "has_examples": true },
{
"code": "ky",
"name": "Kyrgyz",
"example": "Адамга эң кыйыны — күн сайын адам болуу",
"has_examples": true
},
{ "code": "te", "name": "Telugu", "example": "ఇది ఒక వాక్యం.", "has_examples": true }, { "code": "te", "name": "Telugu", "example": "ఇది ఒక వాక్యం.", "has_examples": true },
{ "code": "si", "name": "Sinhala", "example": "මෙය වාක්‍යයකි.", "has_examples": true }, { "code": "si", "name": "Sinhala", "example": "මෙය වාක්‍යයකි.", "has_examples": true },
{ "code": "ga", "name": "Irish" }, { "code": "ga", "name": "Irish" },