Fix train.py for v1.0.0-rc1

This commit is contained in:
Matthew Honnibal 2016-10-05 01:11:46 +02:00
parent 89174cda74
commit 53fbd3dd1c
1 changed files with 24 additions and 20 deletions

View File

@ -79,10 +79,8 @@ def _merge_sents(sents):
return [(m_deps, m_brackets)]
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
beam_width=1, verbose=False,
use_orig_arc_eager=False, pseudoprojective=False):
def train(Language, gold_tuples, model_dir, tagger_cfg, parser_cfg, entity_cfg,
n_iter=15, seed=0, gold_preproc=False, n_sents=0, corruption_level=0):
dep_model_dir = path.join(model_dir, 'deps')
ner_model_dir = path.join(model_dir, 'ner')
pos_model_dir = path.join(model_dir, 'pos')
@ -96,24 +94,28 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
os.mkdir(ner_model_dir)
os.mkdir(pos_model_dir)
if pseudoprojective:
if parser_cfg['pseudoprojective']:
# preprocess training data here before ArcEager.get_labels() is called
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
labels=ArcEager.get_labels(gold_tuples),
beam_width=beam_width,projectivize=pseudoprojective)
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
labels=BiluoPushDown.get_labels(gold_tuples),
beam_width=0)
parser_cfg['labels'] = ArcEager.get_labels(gold_tuples)
entity_cfg['labels'] = BiluoPushDown.get_labels(gold_tuples)
with (dep_model_dir / 'config.json').open('w') as file_:
json.dump(file_, parser_config)
with (ner_model_dir / 'config.json').open('w') as file_:
json.dump(file_, entity_config)
with (pos_model_dir / 'config.json').open('w') as file_:
json.dump(file_, tagger_config)
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
nlp = Language(
data_dir=model_dir,
tagger=Tagger.blank(nlp.vocab, **tagger_cfg),
parser=Parser.blank(nlp.vocab, ArcEager, **parser_cfg),
entity=Parser.blank(nlp.vocab, BiluoPushDown, **entity_cfg))
print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
for itn in range(n_iter):
scorer = Scorer()
@ -219,15 +221,17 @@ def write_parses(Language, dev_loc, model_dir, out_loc):
)
def main(language, train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
debug=False, corruption_level=0.0, gold_preproc=False, eval_only=False, pseudoprojective=False):
parser_cfg = dict(locals())
tagger_cfg = dict(locals())
entity_cfg = dict(locals())
lang = spacy.util.get_lang_class(language)
if not eval_only:
gold_train = list(read_json_file(train_loc))
train(lang, gold_train, model_dir,
feat_set='basic' if not debug else 'debug',
gold_preproc=gold_preproc, n_sents=n_sents,
corruption_level=corruption_level, n_iter=n_iter,
verbose=verbose,pseudoprojective=pseudoprojective)
train(lang, gold_train, model_dir, tagger_cfg, parser_cfg, entity_cfg,
n_sents=n_sents, gold_preproc=gold_preproc, corruption_level=corruption_level,
n_iter=n_iter)
if out_loc:
write_parses(lang, dev_loc, model_dir, out_loc)
scorer = evaluate(lang, list(read_json_file(dev_loc)),