mirror of https://github.com/explosion/spaCy.git
initialize and update explanation
This commit is contained in:
parent
b0463fbf75
commit
52b660e9dc
|
@ -226,6 +226,12 @@ the "catastrophic forgetting" problem. This feature is experimental.
|
|||
Find the loss and gradient of loss for the batch of documents and their
|
||||
predicted scores.
|
||||
|
||||
<Infobox variant="danger">
|
||||
|
||||
This method needs to be overwritten with your own custom `get_loss` method.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
|
|
|
@ -618,31 +618,97 @@ create a subclass of [`Pipe`](/api/pipe) that will hold the model:
|
|||
|
||||
```python
|
||||
from spacy.pipeline import Pipe
|
||||
from spacy.language import Language
|
||||
|
||||
class RelationExtractor(Pipe):
|
||||
def __init__(self, vocab, model, name="rel", labels=[]):
|
||||
self.model = model
|
||||
...
|
||||
|
||||
def predict(self, docs):
|
||||
...
|
||||
|
||||
def set_annotations(self, docs, scores):
|
||||
def set_annotations(self, docs, predictions):
|
||||
...
|
||||
|
||||
@Language.factory("relation_extractor")
|
||||
def make_relation_extractor(nlp, name, model, labels):
|
||||
return RelationExtractor(nlp.vocab, model, name, labels=labels)
|
||||
```
|
||||
|
||||
Before the model can be used however, it needs to be
|
||||
[initialized](/api/pipe#initialize). This function recieves either the full
|
||||
training data set, or a representative sample. The training data can be used
|
||||
to deduce all relevant labels. Alternatively, a list of labels can be provided,
|
||||
or a script can call `rel_component.add_label()` to add each label separately.
|
||||
|
||||
The number of labels will define the output dimensionality of the network,
|
||||
and will be used to do
|
||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout
|
||||
the layers of the neural network. This is triggerd by calling `model.initialize`.
|
||||
|
||||
```python
|
||||
from itertools import islice
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
*,
|
||||
nlp: Language = None,
|
||||
labels: Optional[List[str]] = None,
|
||||
):
|
||||
if labels is not None:
|
||||
for label in labels:
|
||||
self.add_label(label)
|
||||
else:
|
||||
for example in get_examples():
|
||||
relations = example.reference._.rel
|
||||
for indices, label_dict in relations.items():
|
||||
for label in label_dict.keys():
|
||||
self.add_label(label)
|
||||
subbatch = list(islice(get_examples(), 10))
|
||||
doc_sample = [eg.reference for eg in subbatch]
|
||||
label_sample = self._examples_to_truth(subbatch)
|
||||
self.model.initialize(X=doc_sample, Y=label_sample)
|
||||
```
|
||||
|
||||
The `initialize` method will be triggered whenever this component is part of an
|
||||
`nlp` pipeline, and `nlp.initialize()` is invoked. After doing so, the pipeline
|
||||
component and its internal model can be trained and used to make predictions.
|
||||
|
||||
During training the function [`update`](/api/pipe#update) is invoked which delegates to
|
||||
[`self.model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and
|
||||
needs a function [`get_loss`](/api/pipe#get_loss) that will calculate the
|
||||
loss for a batch of examples, as well as the gradient of loss that will be used to update
|
||||
the weights of the model layers.
|
||||
|
||||
```python
|
||||
def update(
|
||||
self,
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
set_annotations: bool = False,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
docs = [ex.predicted for ex in examples]
|
||||
predictions, backprop = self.model.begin_update(docs)
|
||||
loss, gradient = self.get_loss(examples, predictions)
|
||||
backprop(gradient)
|
||||
losses[self.name] += loss
|
||||
...
|
||||
return losses
|
||||
```
|
||||
|
||||
Thinc provides some [loss functions](https://thinc.ai/docs/api-loss) that can be used
|
||||
for the implementation of the `get_loss` function.
|
||||
|
||||
When the internal model is trained, the component can be used to make novel predictions.
|
||||
The [`predict`](/api/pipe#predict) function needs to be implemented for each
|
||||
subclass. In our case, we can simply delegate to the internal model's
|
||||
subclass of `Pipe`. In our case, we can simply delegate to the internal model's
|
||||
[predict](https://thinc.ai/docs/api-model#predict) function:
|
||||
|
||||
```python
|
||||
def predict(self, docs: Iterable[Doc]) -> Floats2d:
|
||||
scores = self.model.predict(docs)
|
||||
return self.model.ops.asarray(scores)
|
||||
predictions = self.model.predict(docs)
|
||||
return self.model.ops.asarray(predictions)
|
||||
```
|
||||
|
||||
The other method that needs to be implemented, is
|
||||
|
@ -650,7 +716,7 @@ The other method that needs to be implemented, is
|
|||
and modifies the given `Doc` object in place to hold the predictions. For our
|
||||
relation extraction component, we'll store the data as a dictionary in a custom
|
||||
extension attribute `doc._.rel`. As keys, we represent the candidate pair by the
|
||||
start offsets of each entity, as this defines an entity uniquely within one
|
||||
start offsets of each entity, as this defines an entity pair uniquely within one
|
||||
document.
|
||||
|
||||
To interpret the scores predicted by the REL model correctly, we need to
|
||||
|
@ -674,7 +740,7 @@ related to those exact entities:
|
|||
> ```
|
||||
|
||||
```python
|
||||
def set_annotations(self, docs: Iterable[Doc], rel_scores: Floats2d):
|
||||
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
|
||||
c = 0
|
||||
get_candidates = self.model.attrs["get_candidates"]
|
||||
for doc in docs:
|
||||
|
@ -683,34 +749,45 @@ def set_annotations(self, docs: Iterable[Doc], rel_scores: Floats2d):
|
|||
if offset not in doc._.rel:
|
||||
doc._.rel[offset] = {}
|
||||
for j, label in enumerate(self.labels):
|
||||
doc._.rel[offset][label] = rel_scores[c, j]
|
||||
doc._.rel[offset][label] = predictions[c, j]
|
||||
c += 1
|
||||
```
|
||||
|
||||
|
||||
|
||||
<Infobox title="This section is still under construction" emoji="🚧" variant="warning">
|
||||
</Infobox>
|
||||
|
||||
<!-- TODO: write trainable component section
|
||||
- Interaction with `predict`, `get_loss` and `set_annotations`
|
||||
- Initialization life-cycle with `initialize`, correlation with add_label
|
||||
Example: relation extraction component (implemented as project template)
|
||||
Avoid duplication with usage/processing-pipelines#trainable-components ?
|
||||
-->
|
||||
|
||||
<!-- ![Diagram of a pipeline component with its model](../images/layers-architectures.svg)
|
||||
Under the hood, when the pipe is applied to a document, it will delegate to these
|
||||
two methods:
|
||||
|
||||
```python
|
||||
def update(self, examples):
|
||||
docs = [ex.predicted for ex in examples]
|
||||
refs = [ex.reference for ex in examples]
|
||||
predictions, backprop = self.model.begin_update(docs)
|
||||
gradient = self.get_loss(predictions, refs)
|
||||
backprop(gradient)
|
||||
|
||||
def __call__(self, doc):
|
||||
predictions = self.model([doc])
|
||||
self.set_annotations(predictions)
|
||||
def __call__(self, Doc doc):
|
||||
predictions = self.predict([doc])
|
||||
self.set_annotations([doc], predictions)
|
||||
return doc
|
||||
```
|
||||
-->
|
||||
|
||||
Once our `Pipe` subclass is fully implemented, we can
|
||||
[register](http://localhost:8000/usage/processing-pipelines#custom-components-factories)
|
||||
the component with the
|
||||
`Language.factory` decorator. This will enable the creation of the component with
|
||||
`nlp.add_pipe`, or via the config.
|
||||
|
||||
> ```
|
||||
>
|
||||
> [components.relation_extractor]
|
||||
> factory = "relation_extractor"
|
||||
> labels = []
|
||||
>
|
||||
> [components.relation_extractor.model]
|
||||
> @architectures = "rel_model.v1"
|
||||
> ...
|
||||
> ```
|
||||
|
||||
```python
|
||||
from spacy.language import Language
|
||||
|
||||
@Language.factory("relation_extractor")
|
||||
def make_relation_extractor(nlp, name, model, labels):
|
||||
return RelationExtractor(nlp.vocab, model, name, labels=labels)
|
||||
```
|
||||
|
||||
<!-- TODO: refer once more to example project -->
|
||||
|
||||
<!-- ![Diagram of a pipeline component with its model](../images/layers-architectures.svg) -->
|
||||
|
|
Loading…
Reference in New Issue