diff --git a/website/docs/api/entityrecognizer.md b/website/docs/api/entityrecognizer.md
index 2f7a88fbf..14b6fece4 100644
--- a/website/docs/api/entityrecognizer.md
+++ b/website/docs/api/entityrecognizer.md
@@ -65,7 +65,7 @@ architectures and their arguments and hyperparameters.
| `moves` | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[List[str]]~~ |
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [TransitionBasedParser](/api/architectures#TransitionBasedParser). ~~Model[List[Doc], List[Floats2d]]~~ |
-| `incorrect_spans_key` | This key refers to a `SpanGroup` in `doc.spans` that specifies incorrect spans. The NER wiill learn not to predict (exactly) those spans. Defaults to `None`. ~~Optional[str]~~ |
+| `incorrect_spans_key` | This key refers to a `SpanGroup` in `doc.spans` that specifies incorrect spans. The NER will learn not to predict (exactly) those spans. Defaults to `None`. ~~Optional[str]~~ |
| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ |
```python
diff --git a/website/docs/api/tagger.md b/website/docs/api/tagger.md
index 93b6bc88b..b51864d3a 100644
--- a/website/docs/api/tagger.md
+++ b/website/docs/api/tagger.md
@@ -40,11 +40,12 @@ architectures and their arguments and hyperparameters.
> nlp.add_pipe("tagger", config=config)
> ```
-| Setting | Description |
-| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
-| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
-| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ |
+| Setting | Description |
+| ------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
+| `overwrite` 3.2 | Whether existing annotation is overwritten. Defaults to `False`. ~~bool~~ |
+| `scorer` 3.2 | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Optional[Callable]~~ |
+| `neg_prefix` 3.2.1 | The prefix used to specify incorrect tags while training. The tagger will learn not to predict exactly this tag. Defaults to `!`. ~~str~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/tagger.pyx