diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index 06a248767..552ea4f8f 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -36,7 +36,7 @@ from murmurhash.mrmr cimport hash64 from preshed.maps cimport MapStruct from preshed.maps cimport map_get -from thinc.api import layerize, chain, noop, clone +from thinc.api import layerize, chain, noop, clone, with_flatten from thinc.neural import Model, Affine, ReLu, Maxout from thinc.neural._classes.batchnorm import BatchNorm as BN from thinc.neural._classes.selu import SELU @@ -245,7 +245,7 @@ cdef class Parser: parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2) embed_size = util.env_opt('embed_size', 4000) tensors = fine_tune(Tok2Vec(token_vector_width, embed_size, - preprocess=doc2feats())) + preprocess=doc2feats())) if parser_maxout_pieces == 1: lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class, nF=cls.nr_feature, @@ -393,7 +393,7 @@ cdef class Parser: tokvecs = self.model[0].ops.flatten(tokvecses) if USE_FINE_TUNE: - tokvecs += self.model[0].ops.flatten(self.model[0]((docs, tokvecses))) + tokvecs = self.model[0].ops.flatten(self.model[0]((docs, tokvecses))) nr_state = len(docs) nr_class = self.moves.n_moves @@ -453,7 +453,7 @@ cdef class Parser: cdef StateClass stcls, output tokvecs = self.model[0].ops.flatten(tokvecses) if USE_FINE_TUNE: - tokvecs += self.model[0].ops.flatten(self.model[0]((docs, tokvecses))) + tokvecs = self.model[0].ops.flatten(self.model[0]((docs, tokvecses))) cuda_stream = get_cuda_stream() state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs, cuda_stream, 0.0) @@ -531,9 +531,8 @@ cdef class Parser: docs = [docs] golds = [golds] if USE_FINE_TUNE: - my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop) - my_tokvecs = self.model[0].ops.flatten(my_tokvecs) - tokvecs += my_tokvecs + tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop) + tokvecs = self.model[0].ops.flatten(tokvecs) cuda_stream = get_cuda_stream() @@ -586,7 +585,7 @@ cdef class Parser: backprops, sgd, cuda_stream) d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs]) if USE_FINE_TUNE: - bp_my_tokvecs(d_tokvecs, sgd=sgd) + d_tokvecs = bp_my_tokvecs(d_tokvecs, sgd=sgd) return d_tokvecs def update_beam(self, docs_tokvecs, golds, width=None, density=None, @@ -606,9 +605,8 @@ cdef class Parser: assert min(lengths) >= 1 tokvecs = self.model[0].ops.flatten(tokvecs) if USE_FINE_TUNE: - my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop) - my_tokvecs = self.model[0].ops.flatten(my_tokvecs) - tokvecs += my_tokvecs + tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop) + tokvecs = self.model[0].ops.flatten(tokvecs) states = self.moves.init_batch(docs) for gold in golds: @@ -642,7 +640,7 @@ cdef class Parser: self._make_updates(d_tokvecs, backprop_lower, sgd, cuda_stream) d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, lengths) if USE_FINE_TUNE: - bp_my_tokvecs(d_tokvecs, sgd=sgd) + d_tokvecs = bp_my_tokvecs(d_tokvecs, sgd=sgd) return d_tokvecs def _init_gold_batch(self, whole_docs, whole_golds):