mirror of https://github.com/explosion/spaCy.git
Fix bugs in deep_learning_keras example.
This commit is contained in:
parent
3f545f50b5
commit
4c27958990
|
@ -1,5 +1,13 @@
|
||||||
|
import plac
|
||||||
|
import collections
|
||||||
|
import random
|
||||||
|
|
||||||
|
import cytoolz
|
||||||
import numpy
|
import numpy
|
||||||
from collections import defaultdict
|
from keras.layers import Sequential, LSTM, Dense, Embedding, Dropout
|
||||||
|
from keras.wrappers import Bidirectional
|
||||||
|
from keras import model_from_json
|
||||||
|
import cPickle as pickle
|
||||||
|
|
||||||
import spacy
|
import spacy
|
||||||
|
|
||||||
|
@ -7,7 +15,14 @@ import spacy
|
||||||
class SentimentAnalyser(object):
|
class SentimentAnalyser(object):
|
||||||
@classmethod
|
@classmethod
|
||||||
def load(cls, path, nlp):
|
def load(cls, path, nlp):
|
||||||
pass
|
with (path / 'config.json').open() as file_:
|
||||||
|
|
||||||
|
model = model_from_json(file_.read())
|
||||||
|
with (path / 'model').open('rb') as file_:
|
||||||
|
lstm_weights = pickle.load(file_)
|
||||||
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
|
model.set_weights([embeddings] + lstm_weights)
|
||||||
|
return cls(model)
|
||||||
|
|
||||||
def __init__(self, model):
|
def __init__(self, model):
|
||||||
self._model = model
|
self._model = model
|
||||||
|
@ -18,24 +33,40 @@ class SentimentAnalyser(object):
|
||||||
self.set_sentiment(doc, y)
|
self.set_sentiment(doc, y)
|
||||||
|
|
||||||
def pipe(self, docs, batch_size=1000, n_threads=2):
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
||||||
for minibatch in partition_all(batch_size, docs):
|
for minibatch in cytoolz.partition_all(batch_size, docs):
|
||||||
Xs = _get_features(minibatch)
|
Xs = get_features(minibatch, self.max_length)
|
||||||
ys = self._model.predict(X)
|
ys = self._model.predict(Xs)
|
||||||
for i, doc in enumerate(minibatch):
|
for i, doc in enumerate(minibatch):
|
||||||
doc.user_data['sentiment'] = ys[i]
|
doc.user_data['sentiment'] = ys[i]
|
||||||
|
|
||||||
def set_sentiment(self, doc, y):
|
def set_sentiment(self, doc, y):
|
||||||
doc.user_data['sentiment'] = y
|
doc.sentiment = float(y[0])
|
||||||
|
# Sentiment has a native slot for a single float.
|
||||||
|
# For arbitrary data storage, there's:
|
||||||
|
# doc.user_data['my_data'] = y
|
||||||
|
|
||||||
|
|
||||||
def get_features(docs, max_length):
|
def get_features(docs, max_length):
|
||||||
Xs = numpy.zeros(len(docs), max_length, dtype='int32')
|
Xs = numpy.zeros(len(docs), max_length, dtype='int32')
|
||||||
for i, doc in enumerate(minibatch):
|
for i, doc in enumerate(docs):
|
||||||
for j, token in enumerate(doc[:max_length]):
|
for j, token in enumerate(doc[:max_length]):
|
||||||
Xs[i, j] = token.rank if token.has_vector else 0
|
Xs[i, j] = token.rank if token.has_vector else 0
|
||||||
return Xs
|
return Xs
|
||||||
|
|
||||||
def compile_lstm(embeddings, shape, settings, optimizer):
|
|
||||||
|
def train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
|
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
|
||||||
|
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
|
||||||
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
|
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
|
||||||
|
train_X = get_features(nlp.pipe(train_texts), lstm_shape['max_length'])
|
||||||
|
dev_X = get_features(nlp.pipe(dev_texts), lstm_shape['max_length'])
|
||||||
|
model.fit(train_X, train_labels, dev_X, dev_labels,
|
||||||
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def compile_lstm(embeddings, shape, settings):
|
||||||
model = Sequential()
|
model = Sequential()
|
||||||
model.add(
|
model.add(
|
||||||
Embedding(
|
Embedding(
|
||||||
|
@ -53,42 +84,14 @@ def compile_lstm(embeddings, shape, settings, optimizer):
|
||||||
|
|
||||||
|
|
||||||
def get_embeddings(vocab):
|
def get_embeddings(vocab):
|
||||||
'''
|
max_rank = max(lex.rank for lex in vocab if lex.has_vector)
|
||||||
Get a numpy vector of the word embeddings. The Lexeme.rank attribute will
|
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
|
||||||
be the index into the table. We're going to be "decadent" here and use
|
|
||||||
1m vectors, because we're not going to fine-tune them.
|
|
||||||
'''
|
|
||||||
max_rank = max(lex.rank for lex in nlp.vocab if lex.has_vector)
|
|
||||||
vectors = numpy.ndarray((max_rank+1, nlp.vocab.vectors_length), dtype='float32')
|
|
||||||
for lex in vocab:
|
for lex in vocab:
|
||||||
if lex.has_vector:
|
if lex.has_vector:
|
||||||
vectors[lex.rank] = lex.vector
|
vectors[lex.rank] = lex.vector
|
||||||
return vectors
|
return vectors
|
||||||
|
|
||||||
|
|
||||||
def train(train_texts, train_labels, dev_texts, dev_labels,
|
|
||||||
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
|
|
||||||
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
|
|
||||||
model = _compile_model(
|
|
||||||
_get_embeddings(
|
|
||||||
nlp.vocab),
|
|
||||||
lstm_shape,
|
|
||||||
lstm_settings,
|
|
||||||
lstm_optimizer)
|
|
||||||
model.fit(
|
|
||||||
_get_features(
|
|
||||||
nlp.pipe(
|
|
||||||
train_texts)),
|
|
||||||
train_ys,
|
|
||||||
_get_features(
|
|
||||||
nlp.pipe(
|
|
||||||
dev_texts)),
|
|
||||||
dev_ys,
|
|
||||||
nb_epoch=nb_epoch,
|
|
||||||
batch_size=batch_size)
|
|
||||||
model.save(model_dir)
|
|
||||||
|
|
||||||
|
|
||||||
def demonstrate_runtime(model_dir, texts):
|
def demonstrate_runtime(model_dir, texts):
|
||||||
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
|
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
|
||||||
|
|
||||||
|
@ -102,16 +105,11 @@ def demonstrate_runtime(model_dir, texts):
|
||||||
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
|
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
|
||||||
|
|
||||||
nlp = spacy.load('en', create_pipeline=create_pipeline)
|
nlp = spacy.load('en', create_pipeline=create_pipeline)
|
||||||
entity_sentiments = defaultdict(float)
|
|
||||||
entity_freqs = defaultdict(int)
|
entity_sentiments = collections.Counter(float)
|
||||||
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
||||||
sentiment = doc.user_data['sentiment']
|
|
||||||
for ent in doc.ents:
|
for ent in doc.ents:
|
||||||
entity_sentiments[ent.text] += sentiment
|
entity_sentiments[ent.text] += doc.sentiment
|
||||||
entity_freqs[ent.text] += 1
|
|
||||||
# Compute estimate of P(sentiment | entity)
|
|
||||||
for entity, sentiment in entity_freqs.items():
|
|
||||||
entity_sentiments[entity] /= entity_freqs[entity]
|
|
||||||
return entity_sentiments
|
return entity_sentiments
|
||||||
|
|
||||||
|
|
||||||
|
@ -120,7 +118,7 @@ def read_data(data_dir, limit=0):
|
||||||
for subdir, label in (('pos', 1), ('neg', 0)):
|
for subdir, label in (('pos', 1), ('neg', 0)):
|
||||||
for filename in (data_dir / subdir).iterdir():
|
for filename in (data_dir / subdir).iterdir():
|
||||||
with filename.open() as file_:
|
with filename.open() as file_:
|
||||||
text = filename.read()
|
text = file_.read()
|
||||||
examples.append((text, label))
|
examples.append((text, label))
|
||||||
random.shuffle(examples)
|
random.shuffle(examples)
|
||||||
if limit >= 1:
|
if limit >= 1:
|
||||||
|
@ -147,16 +145,19 @@ def main(model_dir, train_dir, dev_dir,
|
||||||
dropout=0.5, # General NN config
|
dropout=0.5, # General NN config
|
||||||
nb_epoch=5, batch_size=100, nr_examples=-1): # Training params
|
nb_epoch=5, batch_size=100, nr_examples=-1): # Training params
|
||||||
if is_runtime:
|
if is_runtime:
|
||||||
dev_texts, dev_labels = read_dev(dev_dir)
|
dev_texts, dev_labels = read_data(dev_dir)
|
||||||
demonstrate_runtime(model_dir, dev_texts)
|
demonstrate_runtime(model_dir, dev_texts)
|
||||||
else:
|
else:
|
||||||
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
||||||
dev_texts, dev_labels = read_dev(dev_dir)
|
dev_texts, dev_labels = read_data(dev_dir)
|
||||||
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
{'nr_hidden': nr_hidden, 'max_length': max_length},
|
{'nr_hidden': nr_hidden, 'max_length': max_length},
|
||||||
{'dropout': 0.5},
|
{'dropout': 0.5},
|
||||||
{},
|
{},
|
||||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
|
weights = lstm.get_weights()
|
||||||
|
with (model_dir / 'model').open('wb') as file_:
|
||||||
|
pickle.dump(file_, weights[1:])
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue