mirror of https://github.com/explosion/spaCy.git
Fix tagger 'fine_tune', to keep private CNN weights
This commit is contained in:
parent
3cb8f06881
commit
4a5cc89138
40
spacy/_ml.py
40
spacy/_ml.py
|
@ -5,6 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
|
|||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
import random
|
||||
import cytoolz
|
||||
|
||||
from thinc.neural._classes.convolution import ExtractWindow
|
||||
from thinc.neural._classes.static_vectors import StaticVectors
|
||||
|
@ -207,7 +208,7 @@ class PrecomputableMaxouts(Model):
|
|||
|
||||
|
||||
def Tok2Vec(width, embed_size, preprocess=None):
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
|
||||
|
@ -218,7 +219,7 @@ def Tok2Vec(width, embed_size, preprocess=None):
|
|||
tok2vec = (
|
||||
with_flatten(
|
||||
asarray(Model.ops, dtype='uint64')
|
||||
>> embed
|
||||
>> uniqued(embed, column=5)
|
||||
>> Maxout(width, width*4, pieces=3)
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
|
@ -319,7 +320,7 @@ def zero_init(model):
|
|||
|
||||
|
||||
def doc2feats(cols=None):
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
def forward(docs, drop=0.):
|
||||
feats = []
|
||||
for doc in docs:
|
||||
|
@ -345,19 +346,26 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
return vectors, backward
|
||||
|
||||
|
||||
def fine_tune(model1, combine=None):
|
||||
def fine_tune(embedding, combine=None):
|
||||
if combine is not None:
|
||||
raise NotImplementedError(
|
||||
"fine_tune currently only supports addition. Set combine=None")
|
||||
def fine_tune_fwd(docs_tokvecs, drop=0.):
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
|
||||
X1, bp_X1 = model1.begin_update(docs)
|
||||
X2 = model1.ops.flatten(tokvecs)
|
||||
|
||||
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
||||
|
||||
output = embedding.ops.unflatten(
|
||||
embedding.ops.flatten(tokvecs)
|
||||
+ embedding.ops.flatten(vecs),
|
||||
lengths)
|
||||
|
||||
def fine_tune_bwd(d_output, sgd=None):
|
||||
bp_X1(model1.ops.flatten(d_output), sgd=sgd)
|
||||
bp_vecs(d_output, sgd=sgd)
|
||||
return d_output
|
||||
|
||||
return model1.ops.unflatten(X1+X2, lengths), fine_tune_bwd
|
||||
model = wrap(fine_tune_fwd)
|
||||
return output, fine_tune_bwd
|
||||
model = wrap(fine_tune_fwd, embedding)
|
||||
return model
|
||||
|
||||
|
||||
|
@ -407,18 +415,18 @@ def preprocess_doc(docs, drop=0.):
|
|||
vals = ops.allocate(keys.shape[0]) + 1
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
def getitem(i):
|
||||
def getitem_fwd(X, drop=0.):
|
||||
return X[i], None
|
||||
return layerize(getitem_fwd)
|
||||
|
||||
def build_tagger_model(nr_class, token_vector_width, **cfg):
|
||||
with Model.define_operators({'>>': chain, '+': add}):
|
||||
# Input: (doc, tensor) tuples
|
||||
embed_docs = (
|
||||
FeatureExtracter([NORM])
|
||||
>> flatten
|
||||
>> HashEmbed(token_vector_width, 1000)
|
||||
)
|
||||
private_tok2vec = Tok2Vec(token_vector_width, 7500, preprocess=doc2feats())
|
||||
|
||||
model = (
|
||||
fine_tune(embed_docs)
|
||||
fine_tune(private_tok2vec)
|
||||
>> with_flatten(
|
||||
Maxout(token_vector_width, token_vector_width)
|
||||
>> Softmax(nr_class, token_vector_width)
|
||||
|
|
Loading…
Reference in New Issue