diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index e9d23c568..84b39d454 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -30,6 +30,7 @@ from ..syntax.iterators import CHUNKERS from ..util import normalize_slice from ..compat import is_config from .. import about +from .. import util DEF PADDING = 5 @@ -252,8 +253,12 @@ cdef class Doc: def __get__(self): if 'has_vector' in self.user_hooks: return self.user_hooks['has_vector'](self) - - return any(token.has_vector for token in self) + elif any(token.has_vector for token in self): + return True + elif self.tensor: + return True + else: + return False property vector: """A real-valued meaning representation. Defaults to an average of the @@ -265,12 +270,16 @@ cdef class Doc: def __get__(self): if 'vector' in self.user_hooks: return self.user_hooks['vector'](self) - if self._vector is None: - if len(self): - self._vector = sum(t.vector for t in self) / len(self) - else: - return numpy.zeros((self.vocab.vectors_length,), dtype='float32') - return self._vector + if self._vector is not None: + return self._vector + elif self.has_vector and len(self): + self._vector = sum(t.vector for t in self) / len(self) + return self._vector + elif self.tensor: + self._vector = self.tensor.mean(axis=0) + return self._vector + else: + return numpy.zeros((self.vocab.vectors_length,), dtype='float32') def __set__(self, value): self._vector = value @@ -295,10 +304,6 @@ cdef class Doc: def __set__(self, value): self._vector_norm = value - @property - def string(self): - return self.text - property text: """A unicode representation of the document text. @@ -598,15 +603,16 @@ cdef class Doc: self.is_tagged = bool(TAG in attrs or POS in attrs) return self - def to_disk(self, path): + def to_disk(self, path, **exclude): """Save the current state to a directory. path (unicode or Path): A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. """ - raise NotImplementedError() + with path.open('wb') as file_: + file_.write(self.to_bytes(**exclude)) - def from_disk(self, path): + def from_disk(self, path, **exclude): """Loads state from a directory. Modifies the object in place and returns it. @@ -614,25 +620,28 @@ cdef class Doc: strings or `Path`-like objects. RETURNS (Doc): The modified `Doc` object. """ - raise NotImplementedError() + with path.open('rb') as file_: + bytes_data = file_.read() + self.from_bytes(bytes_data, **exclude) - def to_bytes(self): + def to_bytes(self, **exclude): """Serialize, i.e. export the document contents to a binary string. RETURNS (bytes): A losslessly serialized copy of the `Doc`, including all annotations. """ - return dill.dumps( - (self.text, - self.to_array([LENGTH,SPACY,TAG,LEMMA,HEAD,DEP,ENT_IOB,ENT_TYPE]), - self.sentiment, - self.tensor, - self.noun_chunks_iterator, - self.user_data, - (self.user_hooks, self.user_token_hooks, self.user_span_hooks)), - protocol=-1) + array_head = [LENGTH,SPACY,TAG,LEMMA,HEAD,DEP,ENT_IOB,ENT_TYPE] + serializers = { + 'text': lambda: self.text, + 'array_head': lambda: array_head, + 'array_body': lambda: self.to_array(array_head), + 'sentiment': lambda: self.sentiment, + 'tensor': lambda: self.tensor, + 'user_data': lambda: self.user_data + } + return util.to_bytes(serializers, exclude) - def from_bytes(self, data): + def from_bytes(self, bytes_data, **exclude): """Deserialize, i.e. import the document contents from a binary string. data (bytes): The string to load from. @@ -640,27 +649,36 @@ cdef class Doc: """ if self.length != 0: raise ValueError("Cannot load into non-empty Doc") + deserializers = { + 'text': lambda b: None, + 'array_head': lambda b: None, + 'array_body': lambda b: None, + 'sentiment': lambda b: None, + 'tensor': lambda b: None, + 'user_data': lambda user_data: self.user_data.update(user_data) + } + + msg = util.from_bytes(bytes_data, deserializers, exclude) + cdef attr_t[:, :] attrs cdef int i, start, end, has_space - fields = dill.loads(data) - text, attrs = fields[:2] - self.sentiment, self.tensor = fields[2:4] - self.noun_chunks_iterator, self.user_data = fields[4:6] - self.user_hooks, self.user_token_hooks, self.user_span_hooks = fields[6] + self.sentiment = msg['sentiment'] + self.tensor = msg['tensor'] start = 0 cdef const LexemeC* lex cdef unicode orth_ + text = msg['text'] + attrs = msg['array_body'] for i in range(attrs.shape[0]): end = start + attrs[i, 0] has_space = attrs[i, 1] orth_ = text[start:end] lex = self.vocab.get(self.mem, orth_) self.push_back(lex, has_space) - start = end + has_space - self.from_array([TAG,LEMMA,HEAD,DEP,ENT_IOB,ENT_TYPE], - attrs[:, 2:]) + self.from_array(msg['array_head'][2:], + attrs[:, 2:]) return self def merge(self, int start_idx, int end_idx, *args, **attributes): diff --git a/spacy/tokens/token.pyx b/spacy/tokens/token.pyx index ee98a7244..74610e25e 100644 --- a/spacy/tokens/token.pyx +++ b/spacy/tokens/token.pyx @@ -111,7 +111,7 @@ cdef class Token: RETURNS (float): A scalar similarity score. Higher is more similar. """ if 'similarity' in self.doc.user_token_hooks: - return self.doc.user_token_hooks['similarity'](self) + return self.doc.user_token_hooks['similarity'](self) if self.vector_norm == 0 or other.vector_norm == 0: return 0.0 return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm) @@ -245,7 +245,10 @@ cdef class Token: def __get__(self): if 'vector' in self.doc.user_token_hooks: return self.doc.user_token_hooks['vector'](self) - return self.vocab.get_vector(self.c.lex.orth) + if self.has_vector: + return self.vocab.get_vector(self.c.lex.orth) + else: + return self.doc.tensor[self.i] property vector_norm: """The L2 norm of the token's vector representation.