From 4638f4b869ad18c86c227e71e99c462aabd31eba Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Sat, 12 Aug 2017 17:15:16 -0500 Subject: [PATCH] Fix beam update --- spacy/syntax/_beam_utils.pyx | 76 +++++++++++++++++++++--------------- spacy/syntax/nn_parser.pyx | 20 ++++++---- 2 files changed, 58 insertions(+), 38 deletions(-) diff --git a/spacy/syntax/_beam_utils.pyx b/spacy/syntax/_beam_utils.pyx index 4a4b79dad..10b5e407c 100644 --- a/spacy/syntax/_beam_utils.pyx +++ b/spacy/syntax/_beam_utils.pyx @@ -41,21 +41,24 @@ cdef hash_t _hash_state(void* _state, void* _) except 0: cdef class ParserBeam(object): cdef public TransitionSystem moves - cdef public object docs + cdef public object states cdef public object golds cdef public object beams - def __init__(self, TransitionSystem moves, docs, golds, + def __init__(self, TransitionSystem moves, states, golds, int width=4, float density=0.001): self.moves = moves - self.docs = docs + self.states = states self.golds = golds self.beams = [] - cdef Doc doc cdef Beam beam - for doc in docs: + cdef StateClass state, st + for state in states: beam = Beam(self.moves.n_moves, width, density) - beam.initialize(self.moves.init_beam_state, doc.length, doc.c) + beam.initialize(self.moves.init_beam_state, state.c.length, state.c._sent) + for i in range(beam.size): + st = beam.at(i) + st.c.offset = state.c.offset self.beams.append(beam) @property @@ -100,34 +103,38 @@ cdef class ParserBeam(object): def get_token_ids(states, int n_tokens): cdef StateClass state cdef np.ndarray ids = numpy.zeros((len(states), n_tokens), - dtype='i', order='C') + dtype='int32', order='C') c_ids = ids.data for i, state in enumerate(states): if not state.is_final(): state.c.set_context_tokens(c_ids, n_tokens) + else: + ids[i] = -1 c_ids += ids.shape[1] return ids -def update_beam(TransitionSystem moves, int nr_feature, - docs, tokvecs, golds, +def update_beam(TransitionSystem moves, int nr_feature, int max_steps, + states, tokvecs, golds, state2vec, vec2scores, drop=0., sgd=None, losses=None, int width=4, float density=0.001): - pbeam = ParserBeam(moves, docs, golds, + pbeam = ParserBeam(moves, states, golds, width=width, density=density) - gbeam = ParserBeam(moves, docs, golds, + gbeam = ParserBeam(moves, states, golds, width=width, density=density) - beam_map = {} + beam_maps = [] backprops = [] - violns = [MaxViolation() for _ in range(len(docs))] - example_ids = list(range(len(docs))) - while not pbeam.is_done and not gbeam.is_done: - states, p_indices, g_indices = get_states(example_ids, pbeam, gbeam, beam_map) + violns = [MaxViolation() for _ in range(len(states))] + for t in range(max_steps): + if pbeam.is_done and gbeam.is_done: + break + beam_maps.append({}) + states, p_indices, g_indices = get_states(pbeam, gbeam, beam_maps[-1]) token_ids = get_token_ids(states, nr_feature) vectors, bp_vectors = state2vec.begin_update(token_ids, drop=drop) scores, bp_scores = vec2scores.begin_update(vectors, drop=drop) - + backprops.append((token_ids, bp_vectors, bp_scores)) p_scores = [scores[indices] for indices in p_indices] @@ -140,18 +147,18 @@ def update_beam(TransitionSystem moves, int nr_feature, histories = [(v.p_hist + v.g_hist) for v in violns] losses = [(v.p_probs + v.g_probs) for v in violns] - states_d_scores = get_gradient(moves.n_moves, beam_map, + states_d_scores = get_gradient(moves.n_moves, beam_maps, histories, losses) return states_d_scores, backprops -def get_states(example_ids, pbeams, gbeams, beam_map): - states = [] +def get_states(pbeams, gbeams, beam_map): seen = {} + states = [] p_indices = [] g_indices = [] cdef Beam pbeam, gbeam - for eg_id, pbeam, gbeam in zip(example_ids, pbeams, gbeams): + for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)): p_indices.append([]) for j in range(pbeam.size): key = tuple([eg_id] + pbeam.histories[j]) @@ -174,23 +181,30 @@ def get_states(example_ids, pbeams, gbeams, beam_map): return states, p_indices, g_indices -def get_gradient(nr_class, beam_map, histories, losses): +def get_gradient(nr_class, beam_maps, histories, losses): """ The global model assigns a loss to each parse. The beam scores are additive, so the same gradient is applied to each action in the history. This gives the gradient of a single *action* for a beam state -- so we have "the gradient of loss for taking action i given history H." + + Histories: Each hitory is a list of actions + Each candidate has a history + Each beam has multiple candidates + Each batch has multiple beams + So history is list of lists of lists of ints """ - nr_step = max(len(hist) for hist in histories) - nr_beam = len(histories) - grads = [numpy.zeros((nr_beam, nr_class), dtype='f') for _ in range(nr_step)] - for hist, loss in zip(histories, losses): - key = tuple() - for j, clas in enumerate(hist): - grads[j][i, clas] = loss - key = key + clas - i = beam_map[key] + nr_step = len(beam_maps) + grads = [numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f') + for beam_map in beam_maps] + for eg_id, hists in enumerate(histories): + for loss, hist in zip(losses[eg_id], hists): + key = tuple([eg_id]) + for j, clas in enumerate(hist): + i = beam_maps[j][key] + grads[j][i, clas] = loss + key = key + tuple([clas]) return grads diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index 11584e4d2..c842ef00b 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -529,23 +529,29 @@ cdef class Parser: def update_beam(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None): docs, tokvecs = docs_tokvecs + lengths = [len(d) for d in docs] tokvecs = self.model[0].ops.flatten(tokvecs) + states, golds, max_moves = self._init_gold_batch(docs, golds) cuda_stream = get_cuda_stream() - state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs, cuda_stream, 0.0) + state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, 0.0) - states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, - docs, tokvecs, golds, + states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, max_moves, + states, tokvecs, golds, state2vec, vec2scores, drop, sgd, losses) backprop_lower = [] for i, d_scores in enumerate(states_d_scores): ids, bp_vectors, bp_scores = backprops[i] d_vector = bp_scores(d_scores, sgd=sgd) - backprop_lower.append(( - get_async(cuda_stream, ids), - get_async(cuda_stream, d_vector), - bp_vectors)) + if isinstance(self.model[0].ops, CupyOps) \ + and not isinstance(ids, state2vec.ops.xp.ndarray): + backprop_lower.append(( + get_async(cuda_stream, ids), + get_async(cuda_stream, d_vector), + bp_vectors)) + else: + backprop_lower.append((ids, d_vector, bp_vectors)) d_tokvecs = self.model[0].ops.allocate(tokvecs.shape) self._make_updates(d_tokvecs, backprop_lower, sgd, cuda_stream) lengths = [len(doc) for doc in docs]