From 45b29c4a5b926c8f85b0a2ed4a9b8be13c5bf7eb Mon Sep 17 00:00:00 2001 From: svlandeg Date: Mon, 21 Sep 2020 23:17:23 +0200 Subject: [PATCH] cleanup --- spacy/cli/debug_model.py | 32 +++++++++++++------------------- 1 file changed, 13 insertions(+), 19 deletions(-) diff --git a/spacy/cli/debug_model.py b/spacy/cli/debug_model.py index 017bcd239..1d27c7c52 100644 --- a/spacy/cli/debug_model.py +++ b/spacy/cli/debug_model.py @@ -78,7 +78,9 @@ def debug_model_cli( debug_model(config, nlp, model, print_settings=print_settings) -def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None): +def debug_model( + config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None +): if not isinstance(model, Model): msg.fail( f"Requires a Thinc Model to be analysed, but found {type(model)} instead.", @@ -97,7 +99,6 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, X = _get_docs() # The output vector might differ from the official type of the output layer with data_validation(False): - # msg.info(f"Could not initialize the model with dummy data - using the train_corpus.") try: train_corpus = dot_to_object(config, config["training"]["train_corpus"]) nlp.begin_training(lambda: train_corpus(nlp)) @@ -108,7 +109,10 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X]) msg.info("Initialized the model with dummy data.") except: - msg.fail("Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.", exits=1) + msg.fail( + "Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.", + exits=1, + ) if print_settings.get("print_after_init"): msg.divider(f"STEP 1 - after initialization") @@ -121,7 +125,6 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, tok2vec = None if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener": tok2vec = nlp.get_pipe("tok2vec") - tok2vec.model.initialize(X=X) goldY = None for e in range(3): if tok2vec: @@ -145,17 +148,17 @@ def debug_model(config, nlp, model: Model, *, print_settings: Optional[Dict[str, msg.good(f"Succesfully ended analysis - model looks good.") +def get_gradient(goldY, Y, ops): + return ops.asarray(Y) - ops.asarray(goldY) + + def _simulate_gold(element, counter=1): if isinstance(element, Iterable): for i in range(len(element)): - element[i] = _simulate_gold(element[i], counter+i) + element[i] = _simulate_gold(element[i], counter + i) return element else: - return 1/counter - - -def get_gradient(goldY, Y, ops): - return ops.asarray(Y) - ops.asarray(goldY) + return 1 / counter def _sentences(): @@ -229,12 +232,3 @@ def _print_matrix(value): sample_matrix = sample_matrix[0:5] result = result + str(sample_matrix) return result - - -def _set_output_dim(model, nO): - # the dim inference doesn't always work 100%, we need this hack like we have it in pipe.pyx - if model.has_dim("nO") is None: - model.set_dim("nO", nO) - if model.has_ref("output_layer"): - if model.get_ref("output_layer").has_dim("nO") is None: - model.get_ref("output_layer").set_dim("nO", nO) \ No newline at end of file