Fix vector details in model overview

This commit is contained in:
ines 2017-11-02 20:04:13 +01:00
parent 9baab241b4
commit 43512c68b2
6 changed files with 34 additions and 18 deletions

View File

@ -40,6 +40,8 @@ for id in CURRENT_MODELS
each label in ["Pipeline", "Vectors", "Sources", "Author", "License"]
- var field = label.toLowerCase()
if field == "vectors"
- field = "vecs"
+row
+cell.u-nowrap
+label=label

View File

@ -20,21 +20,33 @@ const CHART_FONTS = {
* @property {function} vectors - Format vector data (entries and dimensions).
* @property {function} version - Format model version number.
*/
export const formats = {
const formats = {
author: (author, url) => url ? `<a href="${url}" target="_blank">${author}</a>` : author,
license: (license, url) => url ? `<a href="${url}" target="_blank">${license}</a>` : license,
sources: sources => (sources instanceof Array) ? sources.join(', ') : sources,
pipeline: pipes => (pipes && pipes.length) ? pipes.map(p => `<code>${p}</code>`).join(', ') : '-',
vectors: vec => vec ? `${abbrNumber(vec.keys)} keys, ${abbrNumber(vec.vectors)} unique vectors (${vec.width} dimensions)` : 'n/a',
vectors: vec => formatVectors(vec),
version: version => `<code>v${version}</code>`
};
/**
* Format word vectors data depending on contents.
* @property {Object} data - The vectors object from the model's meta.json.
*/
const formatVectors = data => {
if (!data) return 'n/a';
if (Object.values(data).every(n => n == 0)) return 'context vectors only';
const { keys, vectors: vecs, width } = data;
return `${abbrNumber(keys)} keys, ${abbrNumber(vecs)} unique vectors (${width} dimensions)`;
}
/**
* Find the latest version of a model in a compatibility table.
* @param {string} model - The model name.
* @param {Object} compat - Compatibility table, keyed by spaCy version.
*/
export const getLatestVersion = (model, compat = {}) => {
const getLatestVersion = (model, compat = {}) => {
for (let [spacy_v, models] of Object.entries(compat)) {
if (models[model]) return models[model][0];
}
@ -90,7 +102,7 @@ export class ModelLoader {
const tpl = new Templater(modelId);
tpl.get('table').removeAttribute('data-loading');
tpl.get('error').style.display = 'block';
for (let key of ['sources', 'pipeline', 'vectors', 'author', 'license']) {
for (let key of ['sources', 'pipeline', 'vecs', 'author', 'license']) {
tpl.get(key).parentElement.parentElement.style.display = 'none';
}
}
@ -120,8 +132,8 @@ export class ModelLoader {
if (author) tpl.fill('author', formats.author(author, url), true);
if (license) tpl.fill('license', formats.license(license, this.licenses[license]), true);
if (sources) tpl.fill('sources', formats.sources(sources));
if (vectors) tpl.fill('vectors', formats.vectors(vectors));
else tpl.get('vectors').parentElement.parentElement.style.display = 'none';
if (vectors) tpl.fill('vecs', formats.vectors(vectors));
else tpl.get('vecs').parentElement.parentElement.style.display = 'none';
if (pipeline && pipeline.length) tpl.fill('pipeline', formats.pipeline(pipeline), true);
else tpl.get('pipeline').parentElement.parentElement.style.display = 'none';
}
@ -223,8 +235,9 @@ export class ModelComparer {
const version = getLatestVersion(name, this.compat);
const modelName = `${name}-${version}`;
return new Promise((resolve, reject) => {
if (!version) reject();
// resolve immediately if model already loaded, e.g. in this.models
if (this.models[name]) resolve(this.models[name]);
else if (this.models[name]) resolve(this.models[name]);
else fetch(`${this.url}/meta/${modelName}.json`)
.then(res => handleResponse(res))
.then(json => json.ok ? resolve(this.saveModel(name, json)) : reject())
@ -306,12 +319,13 @@ export class ModelComparer {
this.tpl.fill(`size${i}`, size);
this.tpl.fill(`desc${i}`, description || 'n/a');
this.tpl.fill(`pipeline${i}`, formats.pipeline(pipeline), true);
this.tpl.fill(`vectors${i}`, formats.vectors(vectors));
this.tpl.fill(`vecs${i}`, formats.vectors(vectors));
this.tpl.fill(`sources${i}`, formats.sources(sources));
this.tpl.fill(`author${i}`, formats.author(author, url), true);
this.tpl.fill(`license${i}`, formats.license(license, this.licenses[license]), true);
// check if model accuracy or speed includes one of the pre-set keys
for (let key of [...metaKeys, ...Object.keys(this.benchKeys.speed)]) {
const allKeys = [].concat(...Object.entries(this.benchKeys).map(([_, v]) => Object.keys(v)));
for (let key of allKeys) {
if (accuracy[key]) this.tpl.fill(`${key}${i}`, accuracy[key].toFixed(2))
else if (speed[key]) this.tpl.fill(`${key}${i}`, convertNumber(Math.round(speed[key])))
else this.tpl.fill(`${key}${i}`, 'n/a')

View File

@ -68,6 +68,7 @@
"gpu": "words per second on GPU",
"pipeline": "Processing pipeline components in order",
"sources": "Sources of training data",
"vecs": "Word vectors included in the model. Models that only support context vectors compute similarity via the tensors shared with the pipeline.",
"benchmark_parser": "Parser accuracy",
"benchmark_ner": "NER accuracy",
"benchmark_speed": "Speed"

View File

@ -53,6 +53,8 @@ div(data-tpl=TPL data-tpl-key="result" style="display: none")
for label in ["Version", "Size", "Pipeline", "Vectors", "Sources", "Author", "License"]
- var field = label.toLowerCase()
if field == "vectors"
- field = "vecs"
+row
+cell.u-nowrap
+label=label

View File

@ -4,9 +4,9 @@ p
| Similarity is determined by comparing #[strong word vectors] or "word
| embeddings", multi-dimensional meaning representations of a word. Word
| vectors can be generated using an algorithm like
| #[+a("https://en.wikipedia.org/wiki/Word2vec") word2vec]. Most of spaCy's
| #[+a("/models") default models] come with
| #[strong 300-dimensional vectors] that look like this:
| #[+a("https://en.wikipedia.org/wiki/Word2vec") word2vec]. spaCy's medium
| #[code md] and large #[code lg] #[+a("/models") models] come with
| #[strong multi-dimensional vectors] that look like this:
+code("banana.vector", false, false, 250).
array([2.02280000e-01, -7.66180009e-02, 3.70319992e-01,

View File

@ -4,12 +4,9 @@
| Dense, real valued vectors representing distributional similarity
| information are now a cornerstone of practical NLP. The most common way
| to train these vectors is the #[+a("https://en.wikipedia.org/wiki/Word2vec") word2vec]
| family of algorithms. The default
| #[+a("/models/en") English model] installs
| 300-dimensional vectors trained on the
| #[+a("http://commoncrawl.org") Common Crawl] corpus.
| If you need to train a word2vec model, we recommend the implementation in
| the Python library #[+a("https://radimrehurek.com/gensim/") Gensim].
| family of algorithms. If you need to train a word2vec model, we recommend
| the implementation in the Python library
| #[+a("https://radimrehurek.com/gensim/") Gensim].
include ../_spacy-101/_similarity
include ../_spacy-101/_word-vectors