mirror of https://github.com/explosion/spaCy.git
Support .gz and .tar.gz files in spacy init-model
This commit is contained in:
parent
74cc6bb06a
commit
406548b976
|
@ -8,6 +8,8 @@ import numpy
|
||||||
from ast import literal_eval
|
from ast import literal_eval
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from preshed.counter import PreshCounter
|
from preshed.counter import PreshCounter
|
||||||
|
import tarfile
|
||||||
|
import gzip
|
||||||
|
|
||||||
from ..compat import fix_text
|
from ..compat import fix_text
|
||||||
from ..vectors import Vectors
|
from ..vectors import Vectors
|
||||||
|
@ -25,17 +27,17 @@ from ..util import prints, ensure_path, get_lang_class
|
||||||
prune_vectors=("optional: number of vectors to prune to",
|
prune_vectors=("optional: number of vectors to prune to",
|
||||||
"option", "V", int)
|
"option", "V", int)
|
||||||
)
|
)
|
||||||
def init_model(lang, output_dir, freqs_loc, clusters_loc=None, vectors_loc=None, prune_vectors=-1):
|
def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None, vectors_loc=None, prune_vectors=-1):
|
||||||
"""
|
"""
|
||||||
Create a new model from raw data, like word frequencies, Brown clusters
|
Create a new model from raw data, like word frequencies, Brown clusters
|
||||||
and word vectors.
|
and word vectors.
|
||||||
"""
|
"""
|
||||||
if not freqs_loc.exists():
|
if freqs_loc is not None and not freqs_loc.exists():
|
||||||
prints(freqs_loc, title="Can't find words frequencies file", exits=1)
|
prints(freqs_loc, title="Can't find words frequencies file", exits=1)
|
||||||
clusters_loc = ensure_path(clusters_loc)
|
clusters_loc = ensure_path(clusters_loc)
|
||||||
vectors_loc = ensure_path(vectors_loc)
|
vectors_loc = ensure_path(vectors_loc)
|
||||||
|
|
||||||
probs, oov_prob = read_freqs(freqs_loc)
|
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
|
||||||
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else (None, None)
|
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else (None, None)
|
||||||
clusters = read_clusters(clusters_loc) if clusters_loc else {}
|
clusters = read_clusters(clusters_loc) if clusters_loc else {}
|
||||||
|
|
||||||
|
@ -46,6 +48,16 @@ def init_model(lang, output_dir, freqs_loc, clusters_loc=None, vectors_loc=None,
|
||||||
nlp.to_disk(output_dir)
|
nlp.to_disk(output_dir)
|
||||||
return nlp
|
return nlp
|
||||||
|
|
||||||
|
def open_file(loc):
|
||||||
|
'''Handle .gz, .tar.gz or unzipped files'''
|
||||||
|
loc = ensure_path(loc)
|
||||||
|
if tarfile.is_tarfile(str(loc)):
|
||||||
|
return tarfile.open(str(loc), 'r:gz')
|
||||||
|
elif loc.parts[-1].endswith('gz'):
|
||||||
|
return (line.decode('utf8') for line in gzip.open(str(loc), 'r'))
|
||||||
|
else:
|
||||||
|
return loc.open('r', encoding='utf8')
|
||||||
|
|
||||||
|
|
||||||
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
|
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
|
||||||
print("Creating model...")
|
print("Creating model...")
|
||||||
|
@ -68,6 +80,11 @@ def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, pru
|
||||||
lexeme.cluster = 0
|
lexeme.cluster = 0
|
||||||
lex_added += 1
|
lex_added += 1
|
||||||
nlp.vocab.cfg.update({'oov_prob': oov_prob})
|
nlp.vocab.cfg.update({'oov_prob': oov_prob})
|
||||||
|
for word in vector_keys:
|
||||||
|
if word not in nlp.vocab:
|
||||||
|
lexeme = nlp.vocab[word]
|
||||||
|
lexeme.is_oov = False
|
||||||
|
lex_added += 1
|
||||||
|
|
||||||
if len(vectors_data):
|
if len(vectors_data):
|
||||||
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
||||||
|
@ -81,16 +98,16 @@ def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, pru
|
||||||
|
|
||||||
|
|
||||||
def read_vectors(vectors_loc):
|
def read_vectors(vectors_loc):
|
||||||
print("Reading vectors...")
|
print("Reading vectors from %s" % vectors_loc)
|
||||||
with vectors_loc.open() as f:
|
f = open_file(vectors_loc)
|
||||||
shape = tuple(int(size) for size in f.readline().split())
|
shape = tuple(int(size) for size in next(f).split())
|
||||||
vectors_data = numpy.zeros(shape=shape, dtype='f')
|
vectors_data = numpy.zeros(shape=shape, dtype='f')
|
||||||
vectors_keys = []
|
vectors_keys = []
|
||||||
for i, line in enumerate(tqdm(f)):
|
for i, line in enumerate(tqdm(f)):
|
||||||
pieces = line.split()
|
pieces = line.split()
|
||||||
word = pieces.pop(0)
|
word = pieces.pop(0)
|
||||||
vectors_data[i] = numpy.array([float(val_str) for val_str in pieces], dtype='f')
|
vectors_data[i] = numpy.asarray(pieces, dtype='f')
|
||||||
vectors_keys.append(word)
|
vectors_keys.append(word)
|
||||||
return vectors_data, vectors_keys
|
return vectors_data, vectors_keys
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue