mirror of https://github.com/explosion/spaCy.git
Use LayerNorm and SELU in Tok2Vec
This commit is contained in:
parent
78498a072d
commit
3ed203de25
11
spacy/_ml.py
11
spacy/_ml.py
|
@ -10,6 +10,7 @@ import cytoolz
|
||||||
from thinc.neural._classes.convolution import ExtractWindow
|
from thinc.neural._classes.convolution import ExtractWindow
|
||||||
from thinc.neural._classes.static_vectors import StaticVectors
|
from thinc.neural._classes.static_vectors import StaticVectors
|
||||||
from thinc.neural._classes.batchnorm import BatchNorm
|
from thinc.neural._classes.batchnorm import BatchNorm
|
||||||
|
from thinc.neural._classes.layernorm import LayerNorm as LN
|
||||||
from thinc.neural._classes.resnet import Residual
|
from thinc.neural._classes.resnet import Residual
|
||||||
from thinc.neural import ReLu
|
from thinc.neural import ReLu
|
||||||
from thinc.neural._classes.selu import SELU
|
from thinc.neural._classes.selu import SELU
|
||||||
|
@ -220,11 +221,11 @@ def Tok2Vec(width, embed_size, preprocess=None):
|
||||||
with_flatten(
|
with_flatten(
|
||||||
asarray(Model.ops, dtype='uint64')
|
asarray(Model.ops, dtype='uint64')
|
||||||
>> uniqued(embed, column=5)
|
>> uniqued(embed, column=5)
|
||||||
>> Maxout(width, width*4, pieces=3)
|
>> LN(Maxout(width, width*4, pieces=3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> SELU(width, width*3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> SELU(width, width*3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> SELU(width, width*3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
|
>> Residual(ExtractWindow(nW=1) >> SELU(width, width*3)),
|
||||||
pad=4)
|
pad=4)
|
||||||
)
|
)
|
||||||
if preprocess not in (False, None):
|
if preprocess not in (False, None):
|
||||||
|
|
Loading…
Reference in New Issue