From 39f390dba7e4a5e7ac224b27731e8c463cb92f7d Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Mon, 25 Sep 2017 16:20:49 +0200 Subject: [PATCH] Add docstrings for Pipe API --- spacy/pipeline.pyx | 37 ++++++++++++++++++++++++++++++++++--- 1 file changed, 34 insertions(+), 3 deletions(-) diff --git a/spacy/pipeline.pyx b/spacy/pipeline.pyx index dcc06cdf7..fef925d85 100644 --- a/spacy/pipeline.pyx +++ b/spacy/pipeline.pyx @@ -88,17 +88,30 @@ class BaseThincComponent(object): @classmethod def Model(cls, *shape, **kwargs): + '''Initialize a model for the pipe.''' raise NotImplementedError def __init__(self, vocab, model=True, **cfg): + '''Create a new pipe instance.''' raise NotImplementedError def __call__(self, doc): + '''Apply the pipe to one document. The document is + modified in-place, and returned. + + Both __call__ and pipe should delegate to the `predict()` + and `set_annotations()` methods. + ''' scores = self.predict([doc]) self.set_annotations([doc], scores) return doc def pipe(self, stream, batch_size=128, n_threads=-1): + '''Apply the pipe to a stream of documents. + + Both __call__ and pipe should delegate to the `predict()` + and `set_annotations()` methods. + ''' for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) scores = self.predict(docs) @@ -106,27 +119,42 @@ class BaseThincComponent(object): yield from docs def predict(self, docs): + '''Apply the pipeline's model to a batch of docs, without + modifying them. + ''' raise NotImplementedError def set_annotations(self, docs, scores): + '''Modify a batch of documents, using pre-computed scores.''' raise NotImplementedError - def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None): + def update(self, docs, golds, drop=0., sgd=None, losses=None): + '''Learn from a batch of documents and gold-standard information, + updating the pipe's model. + + Delegates to predict() and get_loss(). + ''' raise NotImplementedError def get_loss(self, docs, golds, scores): + '''Find the loss and gradient of loss for the batch of + documents and their predicted scores.''' raise NotImplementedError def begin_training(self, gold_tuples=tuple(), pipeline=None): - token_vector_width = pipeline[0].model.nO + '''Initialize the pipe for training, using data exampes if available. + If no model has been initialized yet, the model is added.''' if self.model is True: - self.model = self.Model(1, token_vector_width) + self.model = self.Model(**self.cfg) def use_params(self, params): + '''Modify the pipe's model, to use the given parameter values. + ''' with self.model.use_params(params): yield def to_bytes(self, **exclude): + '''Serialize the pipe to a bytestring.''' serialize = OrderedDict(( ('cfg', lambda: json_dumps(self.cfg)), ('model', lambda: self.model.to_bytes()), @@ -135,6 +163,7 @@ class BaseThincComponent(object): return util.to_bytes(serialize, exclude) def from_bytes(self, bytes_data, **exclude): + '''Load the pipe from a bytestring.''' def load_model(b): if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length @@ -150,6 +179,7 @@ class BaseThincComponent(object): return self def to_disk(self, path, **exclude): + '''Serialize the pipe to disk.''' serialize = OrderedDict(( ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))), ('model', lambda p: p.open('wb').write(self.model.to_bytes())), @@ -158,6 +188,7 @@ class BaseThincComponent(object): util.to_disk(path, serialize, exclude) def from_disk(self, path, **exclude): + '''Load the pipe from disk.''' def load_model(p): if self.model is True: self.cfg['pretrained_dims'] = self.vocab.vectors_length