* Refactoring arc_eager, grouping oracle functions into transitions

This commit is contained in:
Matthew Honnibal 2015-06-04 22:43:03 +02:00
parent 4433396005
commit 36a34d544b
1 changed files with 267 additions and 246 deletions

View File

@ -180,7 +180,6 @@ cdef class ArcEager(TransitionSystem):
label = labels[s.stack[0]]
output[i] += move.label != label and label != -1
cdef Transition best_valid(self, const weight_t* scores, const State* s) except *:
cdef bint[N_MOVES] is_valid
is_valid[SHIFT] = _can_shift(s)
@ -210,166 +209,181 @@ cdef class ArcEager(TransitionSystem):
return best
cdef int _do_shift(const Transition* self, State* state) except -1:
# Set the dep label, in case we need it after we reduce
if NON_MONOTONIC:
state.sent[state.i].dep = self.label
push_stack(state)
cdef class Shift:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
return not at_eol(s)
cdef int _do_left(const Transition* self, State* state) except -1:
# Interpret left-arcs from EOL as attachment to root
if at_eol(state):
add_dep(state, state.stack[0], state.stack[0], self.label)
else:
add_dep(state, state.i, state.stack[0], self.label)
pop_stack(state)
cdef int _do_right(const Transition* self, State* state) except -1:
add_dep(state, state.stack[0], state.i, self.label)
push_stack(state)
cdef int _do_reduce(const Transition* self, State* state) except -1:
if NON_MONOTONIC and not has_head(get_s0(state)):
add_dep(state, state.stack[-1], state.stack[0], get_s0(state).dep)
pop_stack(state)
cdef int _do_break(const Transition* self, State* state) except -1:
state.sent[state.i-1].sent_end = True
while state.stack_len != 0:
if get_s0(state).head == 0:
get_s0(state).dep = self.label
state.stack -= 1
state.stack_len -= 1
if not at_eol(state):
@staticmethod
cdef int transition(State* state, int label) except -1:
# Set the dep label, in case we need it after we reduce
if NON_MONOTONIC:
state.sent[state.i].dep = label
push_stack(state)
cdef int _shift_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_shift(s):
return 9000
cost = 0
cost += head_in_stack(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
# If we can break, and there's no cost to doing so, we should
if _can_break(s) and _break_cost(self, s, gold) == 0:
cost += 1
return cost
cdef int _right_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_right(s):
return 9000
cost = 0
if gold.heads[s.i] == s.stack[0]:
cost += self.label != -1 and self.label != gold.labels[s.i]
return cost
# This indicates missing head
if gold.labels[s.i] != -1:
cost += head_in_buffer(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
cost += head_in_stack(s, s.i, gold.heads)
return cost
cdef int _left_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_left(s):
return 9000
cost = 0
if gold.heads[s.stack[0]] == s.i:
cost += self.label != -1 and self.label != gold.labels[s.stack[0]]
return cost
# If we're at EOL, then the left arc will add an arc to ROOT.
elif at_eol(s):
# Are we root?
if gold.labels[s.stack[0]] != -1:
# If we're at EOL, prefer to reduce or break over left-arc
if _can_reduce(s) or _can_break(s):
cost += gold.heads[s.stack[0]] != s.stack[0]
# Are we labelling correctly?
cost += self.label != -1 and self.label != gold.labels[s.stack[0]]
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not _can_shift(s):
return 9000
cost = 0
cost += head_in_stack(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
# If we can break, and there's no cost to doing so, we should
if _can_break(s) and _break_cost(self, s, gold) == 0:
cost += 1
return cost
cost += head_in_buffer(s, s.stack[0], gold.heads)
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC and s.stack_len >= 2:
cost += gold.heads[s.stack[0]] == s.stack[-1]
if gold.labels[s.stack[0]] != -1:
cost += gold.heads[s.stack[0]] == s.stack[0]
return cost
cdef class Reduce:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 2 #and not missing_brackets(s)
else:
return s.stack_len >= 2 and has_head(get_s0(s))
@staticmethod
cdef int transition(State* state, int label) except -1:
if NON_MONOTONIC and not has_head(get_s0(state)):
add_dep(state, state.stack[-1], state.stack[0], get_s0(state).dep)
pop_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Reduce.is_valid(s):
return 9000
cdef int cost = 0
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC:
cost += head_in_buffer(s, s.stack[0], gold.heads)
return cost
cdef int _reduce_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_reduce(s):
return 9000
cdef int cost = 0
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC:
cdef class LeftArc:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 1 #and not missing_brackets(s)
else:
return s.stack_len >= 1 and not has_head(get_s0(s))
@staticmethod
cdef int transition(State* state, int label) except -1:
# Interpret left-arcs from EOL as attachment to root
if at_eol(state):
add_dep(state, state.stack[0], state.stack[0], label)
else:
add_dep(state, state.i, state.stack[0], label)
pop_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not _can_left(s):
return 9000
cost = 0
if gold.heads[s.stack[0]] == s.i:
cost += self.label != -1 and self.label != gold.labels[s.stack[0]]
return cost
# If we're at EOL, then the left arc will add an arc to ROOT.
elif at_eol(s):
# Are we root?
if gold.labels[s.stack[0]] != -1:
# If we're at EOL, prefer to reduce or break over left-arc
if _can_reduce(s) or _can_break(s):
cost += gold.heads[s.stack[0]] != s.stack[0]
# Are we labelling correctly?
cost += label != -1 and label != gold.labels[s.stack[0]]
return cost
cost += head_in_buffer(s, s.stack[0], gold.heads)
return cost
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC and s.stack_len >= 2:
cost += gold.heads[s.stack[0]] == s.stack[-1]
if gold.labels[s.stack[0]] != -1:
cost += gold.heads[s.stack[0]] == s.stack[0]
return cost
cdef int _break_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_break(s):
return 9000
# When we break, we Reduce all of the words on the stack.
cdef int cost = 0
# Number of deps between S0...Sn and N0...Nn
for i in range(s.i, s.sent_len):
cost += children_in_stack(s, i, gold.heads)
cost += head_in_stack(s, i, gold.heads)
return cost
cdef class RightArc:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
return s.stack_len >= 1 and not at_eol(s)
@staticmethod
cdef int transition(State* state, int label) except -1:
add_dep(state, state.stack[0], state.i, label)
push_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not RightArc.is_valid(s):
return 9000
cost = 0
if gold.heads[s.i] == s.stack[0]:
cost += label != -1 and self.label != gold.labels[s.i]
return cost
# This indicates missing head
if gold.labels[s.i] != -1:
cost += head_in_buffer(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
cost += head_in_stack(s, s.i, gold.heads)
return cost
cdef inline bint _can_shift(const State* s) nogil:
return not at_eol(s)
cdef class Break:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
cdef int i
if not USE_BREAK:
return False
elif at_eol(s):
return False
#elif NON_MONOTONIC:
# return True
else:
# In the Break transition paper, they have this constraint that prevents
# Break if stack is disconnected. But, if we're doing non-monotonic parsing,
# we prefer to relax this constraint. This is helpful in parsing whole
# documents, because then we don't get stuck with words on the stack.
seen_headless = False
for i in range(s.stack_len):
if s.sent[s.stack[-i]].head == 0:
if seen_headless:
return False
else:
seen_headless = True
# TODO: Constituency constraints
return True
@staticmethod
cdef int transition(State* state, int label) except -1:
state.sent[state.i-1].sent_end = True
while state.stack_len != 0:
if get_s0(state).head == 0:
get_s0(state).dep = label
state.stack -= 1
state.stack_len -= 1
if not at_eol(state):
push_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Break.is_valid(s):
return 9000
# When we break, we Reduce all of the words on the stack.
cdef int cost = 0
# Number of deps between S0...Sn and N0...Nn
for i in range(s.i, s.sent_len):
cost += children_in_stack(s, i, gold.heads)
cost += head_in_stack(s, i, gold.heads)
return cost
cdef inline bint _can_right(const State* s) nogil:
return s.stack_len >= 1 and not at_eol(s)
cdef inline bint _can_left(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 1 #and not missing_brackets(s)
else:
return s.stack_len >= 1 and not has_head(get_s0(s))
cdef inline bint _can_reduce(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 2 #and not missing_brackets(s)
else:
return s.stack_len >= 2 and has_head(get_s0(s))
cdef inline bint _can_break(const State* s) nogil:
cdef int i
if not USE_BREAK:
cdef class Constituent:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
if s.stack_len < 1:
return False
return False
elif at_eol(s):
return False
#elif NON_MONOTONIC:
# return True
else:
# In the Break transition paper, they have this constraint that prevents
# Break if stack is disconnected. But, if we're doing non-monotonic parsing,
# we prefer to relax this constraint. This is helpful in parsing whole
# documents, because then we don't get stuck with words on the stack.
seen_headless = False
for i in range(s.stack_len):
if s.sent[s.stack[-i]].head == 0:
if seen_headless:
return False
else:
seen_headless = True
# TODO: Constituency constraints
return True
cdef inline bint _can_constituent(const State* s) nogil:
if s.stack_len < 1:
return False
return False
#else:
# # If all stack elements are popped, can't constituent
# for i in range(s.ctnts.stack_len):
@ -378,112 +392,119 @@ cdef inline bint _can_constituent(const State* s) nogil:
# else:
# return False
cdef inline bint _can_adjust(const State* s) nogil:
return False
#if s.ctnts.stack_len < 2:
# return False
@staticmethod
cdef int transition(State* state, int label) except -1:
return False
#cdef Constituent* bracket = new_bracket(state.ctnts)
#cdef const Constituent* b1 = s.ctnts.stack[-1]
#cdef const Constituent* b0 = s.ctnts.stack[0]
#bracket.parent = NULL
#bracket.label = self.label
#bracket.head = get_s0(state)
#bracket.length = 0
#if (b1.head + b1.head.head) != b0.head:
# return False
#elif b0.head >= b1.head:
# return False
#elif b0 >= b1:
# return False
#attach(bracket, state.ctnts.stack)
# Attach rightward children. They're in the brackets array somewhere
# between here and B0.
#cdef Constituent* node
#cdef const TokenC* node_gov
#for i in range(1, bracket - state.ctnts.stack):
# node = bracket - i
# node_gov = node.head + node.head.head
# if node_gov == bracket.head:
# attach(bracket, node)
cdef int _constituent_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_constituent(s):
return 9000
raise Exception("Constituent move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#brackets = gold.brackets(get_s0(s).r_edge, {})
#if not brackets:
# return 2 # 2 loss for bad bracket, only 1 for good bracket bad label
# Index the current brackets in the state
#existing = set()
#for i in range(s.ctnt_len):
# if ctnt.end == s.r_edge and ctnt.label == self.label:
# existing.add(ctnt.start)
#cdef int loss = 2
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets and child.l_edge not in existing:
# if self.label in brackets[child.l_edge]
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
cdef int _adjust_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _can_adjust(s):
return 9000
raise Exception("Adjust move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#gold_starts = gold.brackets(get_s0(s).r_edge, {})
# Case 1: There are 0 brackets ending at this word.
# --> Cost is sunk, but must allow brackets to begin
#if not gold_starts:
# return 0
# Is the top bracket correct?
#gold_labels = gold_starts.get(s.ctnt.start, set())
# TODO: Case where we have a unary rule
# TODO: Case where two brackets end on this word, with top bracket starting
# before
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
#cdef int i
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets:
# if self.label in brackets[child.l_edge]:
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Constituent.is_valid(s):
return 9000
raise Exception("Constituent move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#brackets = gold.brackets(get_s0(s).r_edge, {})
#if not brackets:
# return 2 # 2 loss for bad bracket, only 1 for good bracket bad label
# Index the current brackets in the state
#existing = set()
#for i in range(s.ctnt_len):
# if ctnt.end == s.r_edge and ctnt.label == self.label:
# existing.add(ctnt.start)
#cdef int loss = 2
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets and child.l_edge not in existing:
# if self.label in brackets[child.l_edge]
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
cdef int _do_constituent(const Transition* self, State* state) except -1:
return False
#cdef Constituent* bracket = new_bracket(state.ctnts)
cdef class Adjust:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
return False
#if s.ctnts.stack_len < 2:
# return False
#bracket.parent = NULL
#bracket.label = self.label
#bracket.head = get_s0(state)
#bracket.length = 0
#cdef const Constituent* b1 = s.ctnts.stack[-1]
#cdef const Constituent* b0 = s.ctnts.stack[0]
#attach(bracket, state.ctnts.stack)
# Attach rightward children. They're in the brackets array somewhere
# between here and B0.
#cdef Constituent* node
#cdef const TokenC* node_gov
#for i in range(1, bracket - state.ctnts.stack):
# node = bracket - i
# node_gov = node.head + node.head.head
# if node_gov == bracket.head:
# attach(bracket, node)
#if (b1.head + b1.head.head) != b0.head:
# return False
#elif b0.head >= b1.head:
# return False
#elif b0 >= b1:
# return False
@staticmethod
cdef int transition(State* state) except -1:
return False
#cdef Constituent* b0 = state.ctnts.stack[0]
#cdef Constituent* b1 = state.ctnts.stack[1]
#assert (b1.head + b1.head.head) == b0.head
#assert b0.head < b1.head
#assert b0 < b1
#attach(b0, b1)
## Pop B1 from stack, but keep B0 on top
#state.ctnts.stack -= 1
#state.ctnts.stack[0] = b0
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Adjust.is_valid(s):
return 9000
raise Exception("Adjust move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#gold_starts = gold.brackets(get_s0(s).r_edge, {})
# Case 1: There are 0 brackets ending at this word.
# --> Cost is sunk, but must allow brackets to begin
#if not gold_starts:
# return 0
# Is the top bracket correct?
#gold_labels = gold_starts.get(s.ctnt.start, set())
# TODO: Case where we have a unary rule
# TODO: Case where two brackets end on this word, with top bracket starting
# before
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
#cdef int i
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets:
# if self.label in brackets[child.l_edge]:
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
cdef int _do_adjust(const Transition* self, State* state) except -1:
return False
#cdef Constituent* b0 = state.ctnts.stack[0]
#cdef Constituent* b1 = state.ctnts.stack[1]
#assert (b1.head + b1.head.head) == b0.head
#assert b0.head < b1.head
#assert b0 < b1
#attach(b0, b1)
## Pop B1 from stack, but keep B0 on top
#state.ctnts.stack -= 1
#state.ctnts.stack[0] = b0