From 337a360cc7871f768988d60782d83b420fe24270 Mon Sep 17 00:00:00 2001 From: Adriane Boyd Date: Tue, 27 Jun 2023 19:32:17 +0200 Subject: [PATCH] Use spans_ prefix for default span finder scores (#12753) --- spacy/pipeline/span_finder.py | 8 ++++---- spacy/tests/pipeline/test_span_finder.py | 6 +++--- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/spacy/pipeline/span_finder.py b/spacy/pipeline/span_finder.py index 91be2f2ae..53f5c55be 100644 --- a/spacy/pipeline/span_finder.py +++ b/spacy/pipeline/span_finder.py @@ -53,9 +53,9 @@ DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model "scorer": {"@scorers": "spacy.span_finder_scorer.v1"}, }, default_score_weights={ - f"span_finder_{DEFAULT_SPANS_KEY}_f": 1.0, - f"span_finder_{DEFAULT_SPANS_KEY}_p": 0.0, - f"span_finder_{DEFAULT_SPANS_KEY}_r": 0.0, + f"spans_{DEFAULT_SPANS_KEY}_f": 1.0, + f"spans_{DEFAULT_SPANS_KEY}_p": 0.0, + f"spans_{DEFAULT_SPANS_KEY}_r": 0.0, }, ) def make_span_finder( @@ -104,7 +104,7 @@ def make_span_finder_scorer(): def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: kwargs = dict(kwargs) - attr_prefix = "span_finder_" + attr_prefix = "spans_" key = kwargs["spans_key"] kwargs.setdefault("attr", f"{attr_prefix}{key}") kwargs.setdefault( diff --git a/spacy/tests/pipeline/test_span_finder.py b/spacy/tests/pipeline/test_span_finder.py index 1a8789fff..47a8a34a8 100644 --- a/spacy/tests/pipeline/test_span_finder.py +++ b/spacy/tests/pipeline/test_span_finder.py @@ -230,10 +230,10 @@ def test_overfitting_IO(): # Test scoring scores = nlp.evaluate(train_examples) - assert f"span_finder_{SPANS_KEY}_f" in scores + assert f"spans_{SPANS_KEY}_f" in scores # It's not perfect 1.0 F1 because it's designed to overgenerate for now. - assert scores[f"span_finder_{SPANS_KEY}_p"] == 0.75 - assert scores[f"span_finder_{SPANS_KEY}_r"] == 1.0 + assert scores[f"spans_{SPANS_KEY}_p"] == 0.75 + assert scores[f"spans_{SPANS_KEY}_r"] == 1.0 # also test that the spancat works for just a single entity in a sentence doc = nlp("London")