mirror of https://github.com/explosion/spaCy.git
edits and updates to implementing REL component docs
This commit is contained in:
parent
4a3e611abc
commit
331ec83493
|
@ -624,9 +624,9 @@ with an appropriate backpropagation callback. We also define an
|
|||
[initialization method](https://thinc.ai/docs/usage-models#weights-layers-init)
|
||||
that ensures that the layer is properly set up for training.
|
||||
|
||||
We omit some of the implementation details here, and refer to the spaCy project
|
||||
that has the full implementation
|
||||
[here](https://github.com/explosion/projects/tree/v3/tutorials/rel_component).
|
||||
We omit some of the implementation details here, and refer to the
|
||||
[spaCy project](https://github.com/explosion/projects/tree/v3/tutorials/rel_component)
|
||||
that has the full implementation.
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
|
@ -636,13 +636,13 @@ that has the full implementation
|
|||
>
|
||||
> [model.create_instance_tensor.tok2vec]
|
||||
> @architectures = "spacy.HashEmbedCNN.v1"
|
||||
> ...
|
||||
> # ...
|
||||
>
|
||||
> [model.create_instance_tensor.pooling]
|
||||
> @layers = "reduce_mean.v1"
|
||||
>
|
||||
> [model.create_instance_tensor.get_instances]
|
||||
> ...
|
||||
> # ...
|
||||
> `
|
||||
> ```
|
||||
|
||||
|
@ -658,10 +658,10 @@ def create_tensors(
|
|||
return Model(
|
||||
"instance_tensors",
|
||||
instance_forward,
|
||||
init=instance_init,
|
||||
layers=[tok2vec, pooling],
|
||||
refs={"tok2vec": tok2vec, "pooling": pooling},
|
||||
attrs={"get_instances": get_instances},
|
||||
init=instance_init,
|
||||
)
|
||||
|
||||
|
||||
|
@ -671,9 +671,11 @@ def instance_forward(
|
|||
docs: List[Doc],
|
||||
is_train: bool,
|
||||
) -> Tuple[Floats2d, Callable]:
|
||||
# ...
|
||||
tok2vec = model.get_ref("tok2vec")
|
||||
tokvecs, bp_tokvecs = tok2vec(docs, is_train)
|
||||
get_instances = model.attrs["get_instances"]
|
||||
all_instances = [get_instances(doc) for doc in docs]
|
||||
pooling = model.get_ref("pooling")
|
||||
relations = ...
|
||||
|
||||
def backprop(d_relations: Floats2d) -> List[Doc]:
|
||||
|
@ -744,14 +746,35 @@ This function in added to the [`@misc` registry](/api/top-level#registry) so we
|
|||
can refer to it from the config, and easily swap it out for any other candidate
|
||||
generation function.
|
||||
|
||||
When creating this model, we store the custom functions as
|
||||
[attributes](https://thinc.ai/docs/api-model#properties) and the sublayers as
|
||||
references, so we can access them easily:
|
||||
#### Intermezzo: define how to store the relations data {#component-rel-attribute}
|
||||
|
||||
For our new relation extraction component, we will use a custom
|
||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
||||
`doc._.rel` in which we store relation data. The attribute refers to a
|
||||
dictionary, keyed by the **start offsets of each entity** involved in the
|
||||
candidate relation. The values in the dictionary refer to another dictionary
|
||||
where relation labels are mapped to values between 0 and 1. We assume anything
|
||||
above 0.5 to be a `True` relation. The ~~Example~~ instances that we'll use as
|
||||
training data, will include their gold-standard relation annotations in
|
||||
`example.reference._.rel`.
|
||||
|
||||
> #### Example output
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
||||
> for value, rel_dict in doc._.rel.items():
|
||||
> print(f"{value}: {rel_dict}")
|
||||
>
|
||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
||||
> ```
|
||||
|
||||
```python
|
||||
pooling = model.get_ref("pooling")
|
||||
tok2vec = model.get_ref("tok2vec")
|
||||
get_instances = model.attrs["get_instances"]
|
||||
### Registering the extension attribute
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension("rel", default={})
|
||||
```
|
||||
|
||||
#### Step 2: Implementing the pipeline component {#component-rel-pipe}
|
||||
|
@ -794,19 +817,43 @@ class RelationExtractor(TrainablePipe):
|
|||
...
|
||||
```
|
||||
|
||||
Before the model can be used, it needs to be
|
||||
[initialized](/usage/training#initialization). This function receives a callback
|
||||
to access the full **training data set**, or a representative sample. This data
|
||||
set can be used to deduce all **relevant labels**. Alternatively, a list of
|
||||
labels can be provided to `initialize`, or you can call
|
||||
`RelationExtractor.add_label` directly. The number of labels defines the output
|
||||
dimensionality of the network, and will be used to do
|
||||
Typically, the constructor defines the vocab, the Machine Learning model, and
|
||||
the name of this component. Additionally, this component, just like the
|
||||
`textcat` and the `tagger`, stores an internal list of labels. The ML model will
|
||||
predict scores for each label. We add convenience method to easily retrieve and
|
||||
add to them.
|
||||
|
||||
```python
|
||||
def __init__(self, vocab, model, name="rel"):
|
||||
"""Create a component instance."""
|
||||
# ...
|
||||
self.cfg = {"labels": []}
|
||||
|
||||
@property
|
||||
def labels(self) -> Tuple[str]:
|
||||
"""Returns the labels currently added to the component."""
|
||||
return tuple(self.cfg["labels"])
|
||||
|
||||
def add_label(self, label: str):
|
||||
"""Add a new label to the pipe."""
|
||||
self.cfg["labels"] = list(self.labels) + [label]
|
||||
```
|
||||
|
||||
After creation, the component needs to be
|
||||
[initialized](/usage/training#initialization). This method can define the
|
||||
relevant labels in two ways: explicitely by setting the `labels` argument in the
|
||||
[`initialize` block](/api/data-formats#config-initialize) of the config, or
|
||||
implicately by deducing them from the `get_examples` callback that generates the
|
||||
full **training data set**, or a representative sample.
|
||||
|
||||
The final number of labels defines the output dimensionality of the network, and
|
||||
will be used to do
|
||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
||||
layers of the neural network. This is triggered by calling
|
||||
[`Model.initialize`](https://thinc.ai/api/model#initialize).
|
||||
|
||||
```python
|
||||
### The initialize method {highlight="12,18,22"}
|
||||
### The initialize method {highlight="12,15,18,22"}
|
||||
from itertools import islice
|
||||
|
||||
def initialize(
|
||||
|
@ -837,7 +884,7 @@ Typically, this happens when the pipeline is set up before training in
|
|||
[`spacy train`](/api/cli#training). After initialization, the pipeline component
|
||||
and its internal model can be trained and used to make predictions.
|
||||
|
||||
During training, the function [`update`](/api/pipe#update) is invoked which
|
||||
During training, the method [`update`](/api/pipe#update) is invoked which
|
||||
delegates to
|
||||
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
||||
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
|
||||
|
@ -858,7 +905,7 @@ def update(
|
|||
losses: Optional[Dict[str, float]] = None,
|
||||
) -> Dict[str, float]:
|
||||
# ...
|
||||
docs = [ex.predicted for ex in examples]
|
||||
docs = [eg.predicted for eg in examples]
|
||||
predictions, backprop = self.model.begin_update(docs)
|
||||
loss, gradient = self.get_loss(examples, predictions)
|
||||
backprop(gradient)
|
||||
|
@ -867,8 +914,8 @@ def update(
|
|||
return losses
|
||||
```
|
||||
|
||||
When the internal model is trained, the component can be used to make novel
|
||||
**predictions**. The [`predict`](/api/pipe#predict) function needs to be
|
||||
After training the model, the component can be used to make novel
|
||||
**predictions**. The [`predict`](/api/pipe#predict) method needs to be
|
||||
implemented for each subclass of `TrainablePipe`. In our case, we can simply
|
||||
delegate to the internal model's
|
||||
[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
|
||||
|
@ -884,42 +931,21 @@ def predict(self, docs: Iterable[Doc]) -> Floats2d:
|
|||
The final method that needs to be implemented, is
|
||||
[`set_annotations`](/api/pipe#set_annotations). This function takes the
|
||||
predictions, and modifies the given `Doc` object in place to store them. For our
|
||||
relation extraction component, we store the data as a dictionary in a custom
|
||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
||||
`doc._.rel`. As keys, we represent the candidate pair by the **start offsets of
|
||||
each entity**, as this defines an entity pair uniquely within one document.
|
||||
relation extraction component, we store the data in the
|
||||
[custom attribute](#component-rel-attribute)`doc._.rel`.
|
||||
|
||||
To interpret the scores predicted by the relation extraction model correctly, we
|
||||
need to refer to the model's `get_candidates` function that defined which pairs
|
||||
need to refer to the model's `get_instances` function that defined which pairs
|
||||
of entities were relevant candidates, so that the predictions can be linked to
|
||||
those exact entities:
|
||||
|
||||
> #### Example output
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
||||
> for value, rel_dict in doc._.rel.items():
|
||||
> print(f"{value}: {rel_dict}")
|
||||
>
|
||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Registering the extension attribute
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension("rel", default={})
|
||||
```
|
||||
|
||||
```python
|
||||
### The set_annotations method {highlight="5-6,10"}
|
||||
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
|
||||
c = 0
|
||||
get_candidates = self.model.attrs["get_candidates"]
|
||||
get_instances = self.model.attrs["get_instances"]
|
||||
for doc in docs:
|
||||
for (e1, e2) in get_candidates(doc):
|
||||
for (e1, e2) in get_instances(doc):
|
||||
offset = (e1.start, e2.start)
|
||||
if offset not in doc._.rel:
|
||||
doc._.rel[offset] = {}
|
||||
|
@ -933,7 +959,7 @@ Under the hood, when the pipe is applied to a document, it delegates to the
|
|||
|
||||
```python
|
||||
### The __call__ method
|
||||
def __call__(self, Doc doc):
|
||||
def __call__(self, doc: Doc):
|
||||
predictions = self.predict([doc])
|
||||
self.set_annotations([doc], predictions)
|
||||
return doc
|
||||
|
@ -957,8 +983,8 @@ def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
|
|||
}
|
||||
```
|
||||
|
||||
This is particularly useful to see the scores on the development corpus when
|
||||
training the component with [`spacy train`](/api/cli#training).
|
||||
This is particularly useful for calculating relevant scores on the development
|
||||
corpus when training the component with [`spacy train`](/api/cli#training).
|
||||
|
||||
Once our `TrainablePipe` subclass is fully implemented, we can
|
||||
[register](/usage/processing-pipelines#custom-components-factories) the
|
||||
|
@ -975,13 +1001,8 @@ assigns it a name and lets you create the component with
|
|||
>
|
||||
> [components.relation_extractor.model]
|
||||
> @architectures = "rel_model.v1"
|
||||
>
|
||||
> [components.relation_extractor.model.tok2vec]
|
||||
> # ...
|
||||
>
|
||||
> [components.relation_extractor.model.get_candidates]
|
||||
> @misc = "rel_cand_generator.v1"
|
||||
> max_length = 20
|
||||
>
|
||||
> [training.score_weights]
|
||||
> rel_micro_p = 0.0
|
||||
|
|
Loading…
Reference in New Issue