Clean up conllu script

This commit is contained in:
Matthew Honnibal 2018-02-24 10:31:53 +01:00
parent 01d1b7abdf
commit 329b14c9e6
1 changed files with 19 additions and 43 deletions

View File

@ -13,6 +13,7 @@ from spacy.gold import GoldParse, minibatch
from spacy.syntax.nonproj import projectivize
from collections import Counter
from timeit import default_timer as timer
from spacy.matcher import Matcher
import random
import numpy.random
@ -22,42 +23,6 @@ from spacy._align import align
random.seed(0)
numpy.random.seed(0)
def prevent_bad_sentences(doc):
'''This is an example pipeline component for fixing sentence segmentation
mistakes. The component sets is_sent_start to False, which means the
parser will be prevented from making a sentence boundary there. The
rules here aren't necessarily a good idea.'''
for token in doc[1:]:
if token.nbor(-1).text == ',':
token.is_sent_start = False
elif not token.nbor(-1).whitespace_:
token.is_sent_start = False
elif not token.nbor(-1).is_punct:
token.is_sent_start = False
elif token.nbor(-1).is_left_punct:
token.is_sent_start = False
return doc
def load_model(lang):
'''This shows how to adjust the tokenization rules, to special-case
for ways the CoNLLU tokenization differs. We need to get the tokenizer
accuracy high on the various treebanks in order to do well. If we don't
align on a content word, all dependencies to and from that word will
be marked as incorrect.
'''
English = spacy.util.get_lang_class(lang)
English.Defaults.token_match = re.compile(r'=+|!+|\?+|\*+|_+').match
nlp = English()
nlp.tokenizer.add_special_case('***', [{'ORTH': '***'}])
nlp.tokenizer.add_special_case("):", [{'ORTH': ")"}, {"ORTH": ":"}])
nlp.tokenizer.add_special_case("and/or", [{'ORTH': "and"}, {"ORTH": "/"}, {"ORTH": "or"}])
nlp.tokenizer.add_special_case("non-Microsoft", [{'ORTH': "non-Microsoft"}])
nlp.tokenizer.add_special_case("mis-matches", [{'ORTH': "mis-matches"}])
nlp.tokenizer.add_special_case("X.", [{'ORTH': "X"}, {"ORTH": "."}])
nlp.tokenizer.add_special_case("b/c", [{'ORTH': "b/c"}])
return nlp
def get_token_acc(docs, golds):
'''Quick function to evaluate tokenization accuracy.'''
@ -229,8 +194,16 @@ def print_progress(itn, losses, scorer):
))
print(tpl.format(itn, **scores))
def print_conllu(docs, file_):
merger = Matcher(docs[0].vocab)
merger.add('SUBTOK', None, [{'DEP': 'subtok', 'op': '+'}])
for i, doc in enumerate(docs):
matches = merger(doc)
spans = [(doc[start].idx, doc[end+1].idx+len(doc[end+1]))
for (_, start, end) in matches if end < (len(doc)-1)]
for start_char, end_char in spans:
doc.merge(start_char, end_char)
file_.write("# newdoc id = {i}\n".format(i=i))
for j, sent in enumerate(doc.sents):
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
@ -246,13 +219,15 @@ def print_conllu(docs, file_):
file_.write('\n')
def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
output_loc):
nlp = load_model(spacy_model)
vec_nlp = spacy.util.load_model('spacy/data/en_core_web_lg/en_core_web_lg-2.0.0')
nlp.vocab.vectors = vec_nlp.vocab.vectors
for lex in vec_nlp.vocab:
_ = nlp.vocab[lex.orth_]
nlp = spacy.blank(lang)
if lang == 'en':
vec_nlp = spacy.util.load_model('spacy/data/en_core_web_lg/en_core_web_lg-2.0.0')
nlp.vocab.vectors = vec_nlp.vocab.vectors
for lex in vec_nlp.vocab:
_ = nlp.vocab[lex.orth_]
vec_nlp = None
with open(conllu_train_loc) as conllu_file:
with open(text_train_loc) as text_file:
docs, golds = read_data(nlp, conllu_file, text_file,
@ -262,6 +237,7 @@ def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.parser.add_multitask_objective('tag')
nlp.parser.add_multitask_objective('sent_start')
nlp.parser.moves.add_action(2, 'subtok')
nlp.add_pipe(nlp.create_pipe('tagger'))
for gold in golds:
for tag in gold.tags:
@ -281,7 +257,7 @@ def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
spacy.util.env_opt('batch_to', 8),
spacy.util.env_opt('batch_to', 2),
spacy.util.env_opt('batch_compound', 1.001))
for i in range(30):
docs = refresh_docs(docs)