mirror of https://github.com/explosion/spaCy.git
Add WIP Chainer sentiment analysis code.
This commit is contained in:
parent
80f473dfb8
commit
3195c52741
|
@ -0,0 +1,307 @@
|
||||||
|
'''WIP --- Doesn't work well yet'''
|
||||||
|
import plac
|
||||||
|
import random
|
||||||
|
|
||||||
|
import pathlib
|
||||||
|
import cPickle as pickle
|
||||||
|
from itertools import izip
|
||||||
|
|
||||||
|
import spacy
|
||||||
|
|
||||||
|
import cytoolz
|
||||||
|
import numpy as np
|
||||||
|
import chainer.links as L
|
||||||
|
import chainer.functions as F
|
||||||
|
from chainer import Chain, Variable, report
|
||||||
|
import chainer.training
|
||||||
|
import chainer.optimizers
|
||||||
|
from chainer.training import extensions
|
||||||
|
from chainer.iterators import SerialIterator
|
||||||
|
from chainer.datasets.tuple_dataset import TupleDataset
|
||||||
|
|
||||||
|
|
||||||
|
class SentimentAnalyser(object):
|
||||||
|
@classmethod
|
||||||
|
def load(cls, path, nlp, max_length=100):
|
||||||
|
raise NotImplementedError
|
||||||
|
#with (path / 'config.json').open() as file_:
|
||||||
|
# model = model_from_json(file_.read())
|
||||||
|
#with (path / 'model').open('rb') as file_:
|
||||||
|
# lstm_weights = pickle.load(file_)
|
||||||
|
#embeddings = get_embeddings(nlp.vocab)
|
||||||
|
#model.set_weights([embeddings] + lstm_weights)
|
||||||
|
#return cls(model, max_length=max_length)
|
||||||
|
|
||||||
|
def __init__(self, model, max_length=100):
|
||||||
|
self._model = model
|
||||||
|
self.max_length = max_length
|
||||||
|
|
||||||
|
def __call__(self, doc):
|
||||||
|
X = get_features([doc], self.max_length)
|
||||||
|
y = self._model.predict(X)
|
||||||
|
self.set_sentiment(doc, y)
|
||||||
|
|
||||||
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
||||||
|
for minibatch in cytoolz.partition_all(batch_size, docs):
|
||||||
|
minibatch = list(minibatch)
|
||||||
|
sentences = []
|
||||||
|
for doc in minibatch:
|
||||||
|
sentences.extend(doc.sents)
|
||||||
|
Xs = get_features(sentences, self.max_length)
|
||||||
|
ys = self._model.predict(Xs)
|
||||||
|
for sent, label in zip(sentences, ys):
|
||||||
|
sent.doc.sentiment += label - 0.5
|
||||||
|
for doc in minibatch:
|
||||||
|
yield doc
|
||||||
|
|
||||||
|
def set_sentiment(self, doc, y):
|
||||||
|
doc.sentiment = float(y[0])
|
||||||
|
# Sentiment has a native slot for a single float.
|
||||||
|
# For arbitrary data storage, there's:
|
||||||
|
# doc.user_data['my_data'] = y
|
||||||
|
|
||||||
|
class Classifier(Chain):
|
||||||
|
def __init__(self, predictor):
|
||||||
|
super(Classifier, self).__init__(predictor=predictor)
|
||||||
|
|
||||||
|
def __call__(self, x, t):
|
||||||
|
y = self.predictor(x)
|
||||||
|
loss = F.softmax_cross_entropy(y, t)
|
||||||
|
accuracy = F.accuracy(y, t)
|
||||||
|
report({'loss': loss, 'accuracy': accuracy}, self)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class SentimentModel(Chain):
|
||||||
|
def __init__(self, shape, **settings):
|
||||||
|
Chain.__init__(self,
|
||||||
|
embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden']),
|
||||||
|
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
|
||||||
|
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
|
||||||
|
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
|
||||||
|
|
||||||
|
def __call__(self, sentence):
|
||||||
|
return self.predict(
|
||||||
|
self.attend(
|
||||||
|
self.encode(
|
||||||
|
self.embed(sentence))))
|
||||||
|
|
||||||
|
|
||||||
|
class _Embed(Chain):
|
||||||
|
def __init__(self, nr_vector, nr_dim, nr_out):
|
||||||
|
Chain.__init__(self,
|
||||||
|
embed=L.EmbedID(nr_vector, nr_dim),
|
||||||
|
project=L.Linear(None, nr_out, nobias=True))
|
||||||
|
#self.embed.unchain_backward()
|
||||||
|
|
||||||
|
def __call__(self, sentence):
|
||||||
|
return [self.project(self.embed(ts)) for ts in F.transpose(sentence)]
|
||||||
|
|
||||||
|
|
||||||
|
class _Encode(Chain):
|
||||||
|
def __init__(self, nr_in, nr_out):
|
||||||
|
Chain.__init__(self,
|
||||||
|
fwd=L.LSTM(nr_in, nr_out),
|
||||||
|
bwd=L.LSTM(nr_in, nr_out),
|
||||||
|
mix=L.Bilinear(nr_out, nr_out, nr_out))
|
||||||
|
|
||||||
|
def __call__(self, sentence):
|
||||||
|
self.fwd.reset_state()
|
||||||
|
fwds = map(self.fwd, sentence)
|
||||||
|
self.bwd.reset_state()
|
||||||
|
bwds = reversed(map(self.bwd, reversed(sentence)))
|
||||||
|
return [F.elu(self.mix(f, b)) for f, b in zip(fwds, bwds)]
|
||||||
|
|
||||||
|
|
||||||
|
class _Attend(Chain):
|
||||||
|
def __init__(self, nr_in, nr_out):
|
||||||
|
Chain.__init__(self)
|
||||||
|
|
||||||
|
def __call__(self, sentence):
|
||||||
|
sent = sum(sentence)
|
||||||
|
return sent
|
||||||
|
|
||||||
|
|
||||||
|
class _Predict(Chain):
|
||||||
|
def __init__(self, nr_in, nr_out):
|
||||||
|
Chain.__init__(self,
|
||||||
|
l1=L.Linear(nr_in, nr_in),
|
||||||
|
l2=L.Linear(nr_in, nr_out))
|
||||||
|
|
||||||
|
def __call__(self, vector):
|
||||||
|
vector = self.l1(vector)
|
||||||
|
vector = F.elu(vector)
|
||||||
|
vector = self.l2(vector)
|
||||||
|
return vector
|
||||||
|
|
||||||
|
|
||||||
|
class SentenceDataset(TupleDataset):
|
||||||
|
def __init__(self, nlp, texts, labels, max_length):
|
||||||
|
self.max_length = max_length
|
||||||
|
sents, labels = self._get_labelled_sentences(
|
||||||
|
nlp.pipe(texts, batch_size=5000, n_threads=3),
|
||||||
|
labels)
|
||||||
|
TupleDataset.__init__(self,
|
||||||
|
get_features(sents, max_length),
|
||||||
|
labels)
|
||||||
|
|
||||||
|
def _get_labelled_sentences(self, docs, doc_labels):
|
||||||
|
labels = []
|
||||||
|
sentences = []
|
||||||
|
for doc, y in izip(docs, doc_labels):
|
||||||
|
for sent in doc.sents:
|
||||||
|
sentences.append(sent)
|
||||||
|
labels.append(y)
|
||||||
|
return sentences, labels
|
||||||
|
|
||||||
|
|
||||||
|
class DocDataset(TupleDataset):
|
||||||
|
def __init__(self, nlp, texts, labels):
|
||||||
|
self.max_length = max_length
|
||||||
|
TupleDataset.__init__(self,
|
||||||
|
get_features(
|
||||||
|
nlp.pipe(texts, batch_size=5000, n_threads=3), self.max_length),
|
||||||
|
labels)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def read_data(data_dir, limit=0):
|
||||||
|
examples = []
|
||||||
|
for subdir, label in (('pos', 1), ('neg', 0)):
|
||||||
|
for filename in (data_dir / subdir).iterdir():
|
||||||
|
with filename.open() as file_:
|
||||||
|
text = file_.read()
|
||||||
|
examples.append((text, label))
|
||||||
|
random.shuffle(examples)
|
||||||
|
if limit >= 1:
|
||||||
|
examples = examples[:limit]
|
||||||
|
return zip(*examples) # Unzips into two lists
|
||||||
|
|
||||||
|
|
||||||
|
def get_features(docs, max_length):
|
||||||
|
docs = list(docs)
|
||||||
|
Xs = np.zeros((len(docs), max_length), dtype='int32')
|
||||||
|
for i, doc in enumerate(docs):
|
||||||
|
j = 0
|
||||||
|
for token in doc:
|
||||||
|
if token.has_vector and not token.is_punct and not token.is_space:
|
||||||
|
Xs[i, j] = token.norm
|
||||||
|
j += 1
|
||||||
|
if j >= max_length:
|
||||||
|
break
|
||||||
|
return Xs
|
||||||
|
|
||||||
|
|
||||||
|
def get_embeddings(vocab, max_rank=1000):
|
||||||
|
if max_rank is None:
|
||||||
|
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
||||||
|
vectors = np.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
|
||||||
|
for lex in vocab:
|
||||||
|
if lex.has_vector and lex.rank < max_rank:
|
||||||
|
lex.norm = lex.rank+1
|
||||||
|
vectors[lex.rank + 1] = lex.vector
|
||||||
|
else:
|
||||||
|
lex.norm = 0
|
||||||
|
return vectors
|
||||||
|
|
||||||
|
|
||||||
|
def train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
|
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
|
||||||
|
by_sentence=True):
|
||||||
|
print("Loading spaCy")
|
||||||
|
nlp = spacy.load('en', entity=False)
|
||||||
|
for lex in nlp.vocab:
|
||||||
|
if lex.rank >= (lstm_shape['nr_vector'] - 1):
|
||||||
|
lex.norm = 0
|
||||||
|
else:
|
||||||
|
lex.norm = lex.rank+1
|
||||||
|
#print("Get embeddings")
|
||||||
|
#embeddings = get_embeddings(nlp.vocab)
|
||||||
|
print("Make model")
|
||||||
|
model = Classifier(SentimentModel(lstm_shape, **lstm_settings))
|
||||||
|
print("Parsing texts...")
|
||||||
|
if by_sentence:
|
||||||
|
train_data = SentenceDataset(nlp, train_texts, train_labels, lstm_shape['max_length'])
|
||||||
|
dev_data = SentenceDataset(nlp, dev_texts, dev_labels, lstm_shape['max_length'])
|
||||||
|
else:
|
||||||
|
train_data = DocDataset(nlp, train_texts, train_labels)
|
||||||
|
dev_data = DocDataset(nlp, dev_texts, dev_labels)
|
||||||
|
train_iter = SerialIterator(train_data, batch_size=batch_size,
|
||||||
|
shuffle=True, repeat=True)
|
||||||
|
dev_iter = SerialIterator(dev_data, batch_size=batch_size,
|
||||||
|
shuffle=False, repeat=False)
|
||||||
|
|
||||||
|
optimizer = chainer.optimizers.Adam()
|
||||||
|
optimizer.setup(model)
|
||||||
|
updater = chainer.training.StandardUpdater(train_iter, optimizer)
|
||||||
|
trainer = chainer.training.Trainer(updater, (20, 'epoch'), out='result')
|
||||||
|
|
||||||
|
trainer.extend(extensions.Evaluator(dev_iter, model))
|
||||||
|
trainer.extend(extensions.LogReport())
|
||||||
|
trainer.extend(extensions.PrintReport([
|
||||||
|
'epoch', 'main/accuracy', 'validation/main/accuracy']))
|
||||||
|
trainer.extend(extensions.ProgressBar())
|
||||||
|
|
||||||
|
trainer.run()
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate(model_dir, texts, labels, max_length=100):
|
||||||
|
def create_pipeline(nlp):
|
||||||
|
'''
|
||||||
|
This could be a lambda, but named functions are easier to read in Python.
|
||||||
|
'''
|
||||||
|
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
|
||||||
|
max_length=max_length)]
|
||||||
|
|
||||||
|
nlp = spacy.load('en')
|
||||||
|
nlp.pipeline = create_pipeline(nlp)
|
||||||
|
|
||||||
|
correct = 0
|
||||||
|
i = 0
|
||||||
|
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
||||||
|
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
|
||||||
|
i += 1
|
||||||
|
return float(correct) / i
|
||||||
|
|
||||||
|
|
||||||
|
@plac.annotations(
|
||||||
|
train_dir=("Location of training file or directory"),
|
||||||
|
dev_dir=("Location of development file or directory"),
|
||||||
|
model_dir=("Location of output model directory",),
|
||||||
|
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
|
||||||
|
nr_hidden=("Number of hidden units", "option", "H", int),
|
||||||
|
max_length=("Maximum sentence length", "option", "L", int),
|
||||||
|
dropout=("Dropout", "option", "d", float),
|
||||||
|
learn_rate=("Learn rate", "option", "e", float),
|
||||||
|
nb_epoch=("Number of training epochs", "option", "i", int),
|
||||||
|
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
|
||||||
|
nr_examples=("Limit to N examples", "option", "n", int)
|
||||||
|
)
|
||||||
|
def main(model_dir, train_dir, dev_dir,
|
||||||
|
is_runtime=False,
|
||||||
|
nr_hidden=64, max_length=100, # Shape
|
||||||
|
dropout=0.5, learn_rate=0.001, # General NN config
|
||||||
|
nb_epoch=5, batch_size=32, nr_examples=-1): # Training params
|
||||||
|
model_dir = pathlib.Path(model_dir)
|
||||||
|
train_dir = pathlib.Path(train_dir)
|
||||||
|
dev_dir = pathlib.Path(dev_dir)
|
||||||
|
if is_runtime:
|
||||||
|
dev_texts, dev_labels = read_data(dev_dir)
|
||||||
|
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
|
||||||
|
print(acc)
|
||||||
|
else:
|
||||||
|
print("Read data")
|
||||||
|
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
||||||
|
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
|
||||||
|
train_labels = np.asarray(train_labels, dtype='int32')
|
||||||
|
dev_labels = np.asarray(dev_labels, dtype='int32')
|
||||||
|
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
|
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 2,
|
||||||
|
'nr_vector': 2000, 'nr_dim': 32},
|
||||||
|
{'dropout': 0.5, 'lr': learn_rate},
|
||||||
|
{},
|
||||||
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
plac.call(main)
|
Loading…
Reference in New Issue