diff --git a/extra/experiments/onto-joint/defaults.cfg b/extra/experiments/onto-joint/defaults.cfg deleted file mode 100644 index 7954b57b5..000000000 --- a/extra/experiments/onto-joint/defaults.cfg +++ /dev/null @@ -1,133 +0,0 @@ -[paths] -train = "" -dev = "" -raw = null -init_tok2vec = null - -[system] -seed = 0 -use_pytorch_for_gpu_memory = false - -[training] -seed = ${system:seed} -dropout = 0.1 -init_tok2vec = ${paths:init_tok2vec} -vectors = null -accumulate_gradient = 1 -max_steps = 0 -max_epochs = 0 -patience = 10000 -eval_frequency = 200 -score_weights = {"dep_las": 0.4, "ents_f": 0.4, "tag_acc": 0.2} -frozen_components = [] - -[training.train_corpus] -@readers = "spacy.Corpus.v1" -path = ${paths:train} -gold_preproc = true -max_length = 0 -limit = 0 - -[training.dev_corpus] -@readers = "spacy.Corpus.v1" -path = ${paths:dev} -gold_preproc = ${training.read_train:gold_preproc} -max_length = 0 -limit = 0 - -[training.batcher] -@batchers = "spacy.batch_by_words.v1" -discard_oversize = false -tolerance = 0.2 - -[training.batcher.size] -@schedules = "compounding.v1" -start = 100 -stop = 1000 -compound = 1.001 - -[training.optimizer] -@optimizers = "Adam.v1" -beta1 = 0.9 -beta2 = 0.999 -L2_is_weight_decay = true -L2 = 0.01 -grad_clip = 1.0 -use_averages = false -eps = 1e-8 -learn_rate = 0.001 - -[nlp] -lang = "en" -load_vocab_data = false -pipeline = ["tok2vec", "ner", "tagger", "parser"] - -[nlp.tokenizer] -@tokenizers = "spacy.Tokenizer.v1" - -[nlp.lemmatizer] -@lemmatizers = "spacy.Lemmatizer.v1" - -[components] - -[components.tok2vec] -factory = "tok2vec" - -[components.ner] -factory = "ner" -learn_tokens = false -min_action_freq = 1 - -[components.tagger] -factory = "tagger" - -[components.parser] -factory = "parser" -learn_tokens = false -min_action_freq = 30 - -[components.tagger.model] -@architectures = "spacy.Tagger.v1" - -[components.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} - -[components.parser.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 8 -hidden_width = 128 -maxout_pieces = 2 -use_upper = true - -[components.parser.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} - -[components.ner.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 3 -hidden_width = 128 -maxout_pieces = 2 -use_upper = true - -[components.ner.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} - -[components.tok2vec.model] -@architectures = "spacy.Tok2Vec.v1" - -[components.tok2vec.model.embed] -@architectures = "spacy.MultiHashEmbed.v1" -width = ${components.tok2vec.model.encode:width} -rows = 2000 -also_embed_subwords = true -also_use_static_vectors = false - -[components.tok2vec.model.encode] -@architectures = "spacy.MaxoutWindowEncoder.v1" -width = 96 -depth = 4 -window_size = 1 -maxout_pieces = 3 diff --git a/extra/experiments/onto-joint/pretrain.cfg b/extra/experiments/onto-joint/pretrain.cfg deleted file mode 100644 index 211339603..000000000 --- a/extra/experiments/onto-joint/pretrain.cfg +++ /dev/null @@ -1,152 +0,0 @@ -# Training hyper-parameters and additional features. -[training] -# Whether to train on sequences with 'gold standard' sentence boundaries -# and tokens. If you set this to true, take care to ensure your run-time -# data is passed in sentence-by-sentence via some prior preprocessing. -gold_preproc = false -# Limitations on training document length or number of examples. -max_length = 0 -limit = 0 -# Data augmentation -orth_variant_level = 0.0 -dropout = 0.1 -# Controls early-stopping. 0 or -1 mean unlimited. -patience = 1600 -max_epochs = 0 -max_steps = 20000 -eval_frequency = 400 -# Other settings -seed = 0 -accumulate_gradient = 1 -use_pytorch_for_gpu_memory = false -# Control how scores are printed and checkpoints are evaluated. -scores = ["speed", "tags_acc", "uas", "las", "ents_f"] -score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2} -# These settings are invalid for the transformer models. -init_tok2vec = null -discard_oversize = false -omit_extra_lookups = false -batch_by = "words" -use_gpu = -1 -raw_text = null -tag_map = null - -[training.batch_size] -@schedules = "compounding.v1" -start = 1000 -stop = 1000 -compound = 1.001 - -[training.optimizer] -@optimizers = "Adam.v1" -beta1 = 0.9 -beta2 = 0.999 -L2_is_weight_decay = true -L2 = 0.01 -grad_clip = 1.0 -use_averages = true -eps = 1e-8 -learn_rate = 0.001 - -[pretraining] -max_epochs = 1000 -min_length = 5 -max_length = 500 -dropout = 0.2 -n_save_every = null -batch_size = 3000 -seed = ${training:seed} -use_pytorch_for_gpu_memory = ${training:use_pytorch_for_gpu_memory} -tok2vec_model = "nlp.pipeline.tok2vec.model" - -[pretraining.objective] -type = "characters" -n_characters = 4 - -[pretraining.optimizer] -@optimizers = "Adam.v1" -beta1 = 0.9 -beta2 = 0.999 -L2_is_weight_decay = true -L2 = 0.01 -grad_clip = 1.0 -use_averages = true -eps = 1e-8 -learn_rate = 0.001 - -[nlp] -lang = "en" -vectors = null -base_model = null - -[nlp.pipeline] - -[nlp.pipeline.tok2vec] -factory = "tok2vec" - -[nlp.pipeline.senter] -factory = "senter" - -[nlp.pipeline.ner] -factory = "ner" -learn_tokens = false -min_action_freq = 1 -beam_width = 1 -beam_update_prob = 1.0 - -[nlp.pipeline.tagger] -factory = "tagger" - -[nlp.pipeline.parser] -factory = "parser" -learn_tokens = false -min_action_freq = 1 -beam_width = 1 -beam_update_prob = 1.0 - -[nlp.pipeline.senter.model] -@architectures = "spacy.Tagger.v1" - -[nlp.pipeline.senter.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - -[nlp.pipeline.tagger.model] -@architectures = "spacy.Tagger.v1" - -[nlp.pipeline.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - -[nlp.pipeline.parser.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 8 -hidden_width = 128 -maxout_pieces = 3 -use_upper = false - -[nlp.pipeline.parser.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - -[nlp.pipeline.ner.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 3 -hidden_width = 128 -maxout_pieces = 3 -use_upper = false - -[nlp.pipeline.ner.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - -[nlp.pipeline.tok2vec.model] -@architectures = "spacy.HashEmbedCNN.v1" -pretrained_vectors = ${nlp:vectors} -width = 256 -depth = 6 -window_size = 1 -embed_size = 10000 -maxout_pieces = 3 -subword_features = true -dropout = null diff --git a/extra/experiments/onto-ner.cfg b/extra/experiments/onto-ner.cfg deleted file mode 100644 index eab68a27f..000000000 --- a/extra/experiments/onto-ner.cfg +++ /dev/null @@ -1,73 +0,0 @@ -# Training hyper-parameters and additional features. -[training] -# Whether to train on sequences with 'gold standard' sentence boundaries -# and tokens. If you set this to true, take care to ensure your run-time -# data is passed in sentence-by-sentence via some prior preprocessing. -gold_preproc = false -# Limitations on training document length or number of examples. -max_length = 3000 -limit = 0 -# Data augmentation -orth_variant_level = 0.0 -dropout = 0.1 -# Controls early-stopping. 0 or -1 mean unlimited. -patience = 100000 -max_epochs = 0 -max_steps = 0 -eval_frequency = 1000 -# Other settings -seed = 0 -accumulate_gradient = 1 -use_pytorch_for_gpu_memory = false -# Control how scores are printed and checkpoints are evaluated. -scores = ["speed", "ents_p", "ents_r", "ents_f"] -score_weights = {"ents_f": 1.0} -# These settings are invalid for the transformer models. -init_tok2vec = null -discard_oversize = false -omit_extra_lookups = false -batch_by = "words" - -[training.batch_size] -@schedules = "compounding.v1" -start = 100 -stop = 1000 -compound = 1.001 - -[training.optimizer] -@optimizers = "Adam.v1" -beta1 = 0.9 -beta2 = 0.999 -L2_is_weight_decay = true -L2 = 0.01 -grad_clip = 1.0 -use_averages = true -eps = 1e-8 -learn_rate = 0.001 - -[nlp] -lang = "en" -vectors = null - -[nlp.pipeline.ner] -factory = "ner" -learn_tokens = false -min_action_freq = 1 - -[nlp.pipeline.ner.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 3 -hidden_width = 64 -maxout_pieces = 2 -use_upper = true - -[nlp.pipeline.ner.model.tok2vec] -@architectures = "spacy.HashEmbedCNN.v1" -pretrained_vectors = ${nlp:vectors} -width = 96 -depth = 4 -window_size = 1 -embed_size = 2000 -maxout_pieces = 3 -subword_features = true -dropout = ${training:dropout} diff --git a/extra/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg b/extra/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg deleted file mode 100644 index f1b702a4e..000000000 --- a/extra/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg +++ /dev/null @@ -1,73 +0,0 @@ -[training] -patience = 10000 -eval_frequency = 200 -dropout = 0.2 -init_tok2vec = null -vectors = null -max_epochs = 100 -orth_variant_level = 0.0 -gold_preproc = true -max_length = 0 -use_gpu = 0 -scores = ["tags_acc", "uas", "las"] -score_weights = {"las": 0.8, "tags_acc": 0.2} -limit = 0 -seed = 0 -accumulate_gradient = 2 -discard_oversize = false - -[training.batch_size] -@schedules = "compounding.v1" -start = 100 -stop = 1000 -compound = 1.001 - -[training.optimizer] -@optimizers = "Adam.v1" -learn_rate = 0.001 -beta1 = 0.9 -beta2 = 0.999 - -[nlp] -lang = "en" -vectors = ${training:vectors} - -[nlp.pipeline.tok2vec] -factory = "tok2vec" - -[nlp.pipeline.tagger] -factory = "tagger" - -[nlp.pipeline.parser] -factory = "parser" -learn_tokens = false -min_action_freq = 1 -beam_width = 1 -beam_update_prob = 1.0 - -[nlp.pipeline.tagger.model] -@architectures = "spacy.Tagger.v1" - -[nlp.pipeline.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - -[nlp.pipeline.parser.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 8 -hidden_width = 64 -maxout_pieces = 3 - -[nlp.pipeline.parser.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} - -[nlp.pipeline.tok2vec.model] -@architectures = "spacy.HashEmbedBiLSTM.v1" -pretrained_vectors = ${nlp:vectors} -width = 96 -depth = 4 -embed_size = 2000 -subword_features = true -maxout_pieces = 3 -dropout = null diff --git a/extra/experiments/ptb-joint-pos-dep/defaults.cfg b/extra/experiments/ptb-joint-pos-dep/defaults.cfg deleted file mode 100644 index 8f9c5666e..000000000 --- a/extra/experiments/ptb-joint-pos-dep/defaults.cfg +++ /dev/null @@ -1,110 +0,0 @@ -[paths] -train = "" -dev = "" -raw = null -init_tok2vec = null - -[system] -seed = 0 -use_pytorch_for_gpu_memory = false - -[training] -seed = ${system:seed} -dropout = 0.2 -init_tok2vec = ${paths:init_tok2vec} -vectors = null -accumulate_gradient = 1 -max_steps = 0 -max_epochs = 0 -patience = 10000 -eval_frequency = 200 -score_weights = {"dep_las": 0.8, "tag_acc": 0.2} - -[training.read_train] -@readers = "spacy.Corpus.v1" -path = ${paths:train} -gold_preproc = true -max_length = 0 -limit = 0 - -[training.read_dev] -@readers = "spacy.Corpus.v1" -path = ${paths:dev} -gold_preproc = ${training.read_train:gold_preproc} -max_length = 0 -limit = 0 - -[training.batcher] -@batchers = "spacy.batch_by_words.v1" -discard_oversize = false -tolerance = 0.2 - -[training.batcher.size] -@schedules = "compounding.v1" -start = 100 -stop = 1000 -compound = 1.001 - -[training.optimizer] -@optimizers = "Adam.v1" -learn_rate = 0.001 -beta1 = 0.9 -beta2 = 0.999 - -[nlp] -lang = "en" -pipeline = ["tok2vec", "tagger", "parser"] -load_vocab_data = false - -[nlp.tokenizer] -@tokenizers = "spacy.Tokenizer.v1" - -[nlp.lemmatizer] -@lemmatizers = "spacy.Lemmatizer.v1" - -[components] - -[components.tok2vec] -factory = "tok2vec" - -[components.tagger] -factory = "tagger" - -[components.parser] -factory = "parser" -learn_tokens = false -min_action_freq = 1 - -[components.tagger.model] -@architectures = "spacy.Tagger.v1" - -[components.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} - -[components.parser.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 8 -hidden_width = 64 -maxout_pieces = 3 - -[components.parser.model.tok2vec] -@architectures = "spacy.Tok2VecListener.v1" -width = ${components.tok2vec.model.encode:width} - -[components.tok2vec.model] -@architectures = "spacy.Tok2Vec.v1" - -[components.tok2vec.model.embed] -@architectures = "spacy.MultiHashEmbed.v1" -width = ${components.tok2vec.model.encode:width} -rows = 2000 -also_embed_subwords = true -also_use_static_vectors = false - -[components.tok2vec.model.encode] -@architectures = "spacy.MaxoutWindowEncoder.v1" -width = 96 -depth = 4 -window_size = 1 -maxout_pieces = 3 diff --git a/extra/experiments/tok2vec-ner/charembed_tok2vec.cfg b/extra/experiments/tok2vec-ner/charembed_tok2vec.cfg deleted file mode 100644 index eca6a22fa..000000000 --- a/extra/experiments/tok2vec-ner/charembed_tok2vec.cfg +++ /dev/null @@ -1,69 +0,0 @@ -[training] -use_gpu = -1 -limit = 0 -dropout = 0.2 -patience = 10000 -eval_frequency = 200 -scores = ["ents_f"] -score_weights = {"ents_f": 1} -orth_variant_level = 0.0 -gold_preproc = true -max_length = 0 -batch_size = 25 -seed = 0 -accumulate_gradient = 2 -discard_oversize = false - -[training.optimizer] -@optimizers = "Adam.v1" -learn_rate = 0.001 -beta1 = 0.9 -beta2 = 0.999 - -[nlp] -lang = "en" -vectors = null - -[nlp.pipeline.tok2vec] -factory = "tok2vec" - -[nlp.pipeline.tok2vec.model] -@architectures = "spacy.Tok2Vec.v1" - -[nlp.pipeline.tok2vec.model.extract] -@architectures = "spacy.CharacterEmbed.v1" -width = 96 -nM = 64 -nC = 8 -rows = 2000 -columns = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"] -dropout = null - -[nlp.pipeline.tok2vec.model.extract.features] -@architectures = "spacy.Doc2Feats.v1" -columns = ${nlp.pipeline.tok2vec.model.extract:columns} - -[nlp.pipeline.tok2vec.model.embed] -@architectures = "spacy.LayerNormalizedMaxout.v1" -width = ${nlp.pipeline.tok2vec.model.extract:width} -maxout_pieces = 4 - -[nlp.pipeline.tok2vec.model.encode] -@architectures = "spacy.MaxoutWindowEncoder.v1" -width = ${nlp.pipeline.tok2vec.model.extract:width} -window_size = 1 -maxout_pieces = 2 -depth = 2 - -[nlp.pipeline.ner] -factory = "ner" - -[nlp.pipeline.ner.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 6 -hidden_width = 64 -maxout_pieces = 2 - -[nlp.pipeline.ner.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model.extract:width} diff --git a/extra/experiments/tok2vec-ner/multihashembed_tok2vec.cfg b/extra/experiments/tok2vec-ner/multihashembed_tok2vec.cfg deleted file mode 100644 index e2ab148c6..000000000 --- a/extra/experiments/tok2vec-ner/multihashembed_tok2vec.cfg +++ /dev/null @@ -1,51 +0,0 @@ -[training] -use_gpu = -1 -limit = 0 -dropout = 0.2 -patience = 10000 -eval_frequency = 200 -scores = ["ents_p", "ents_r", "ents_f"] -score_weights = {"ents_f": 1} -orth_variant_level = 0.0 -gold_preproc = true -max_length = 0 -seed = 0 -accumulate_gradient = 2 -discard_oversize = false - -[training.batch_size] -@schedules = "compounding.v1" -start = 3000 -stop = 3000 -compound = 1.001 - - -[training.optimizer] -@optimizers = "Adam.v1" -learn_rate = 0.001 -beta1 = 0.9 -beta2 = 0.999 - -[nlp] -lang = "en" -vectors = null - -[nlp.pipeline.ner] -factory = "ner" - -[nlp.pipeline.ner.model] -@architectures = "spacy.TransitionBasedParser.v1" -nr_feature_tokens = 6 -hidden_width = 64 -maxout_pieces = 2 - -[nlp.pipeline.ner.model.tok2vec] -@architectures = "spacy.HashEmbedCNN.v1" -width = 128 -depth = 4 -embed_size = 7000 -maxout_pieces = 3 -window_size = 1 -subword_features = true -pretrained_vectors = null -dropout = null