mirror of https://github.com/explosion/spaCy.git
Update CLI
This commit is contained in:
parent
553bfea641
commit
2fdb7285a0
|
@ -32,8 +32,9 @@ def train_cli(
|
||||||
config_path: Path = Arg(..., help="Path to config file", exists=True),
|
config_path: Path = Arg(..., help="Path to config file", exists=True),
|
||||||
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
|
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
|
||||||
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
|
||||||
|
init_path: Optional[Path] = Opt(None, "--init", "-i", help="Path to already initialized pipeline directory, e.g. created with 'spacy init pipeline' (will speed up training)"),
|
||||||
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
|
||||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
|
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
|
||||||
# fmt: on
|
# fmt: on
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
|
@ -61,26 +62,38 @@ def train_cli(
|
||||||
msg.info("Using CPU")
|
msg.info("Using CPU")
|
||||||
config = util.load_config(config_path, overrides=overrides, interpolate=False)
|
config = util.load_config(config_path, overrides=overrides, interpolate=False)
|
||||||
msg.divider("Initializing pipeline")
|
msg.divider("Initializing pipeline")
|
||||||
# TODO: add warnings / --initialize (?) argument
|
nlp = init_nlp(config, output_path, init_path)
|
||||||
if output_path is None:
|
|
||||||
nlp = init_pipeline(config)
|
|
||||||
else:
|
|
||||||
init_path = output_path / "model-initial"
|
|
||||||
if must_initialize(config, init_path):
|
|
||||||
nlp = init_pipeline(config)
|
|
||||||
nlp.to_disk(init_path)
|
|
||||||
msg.good(f"Saved initialized pipeline to {init_path}")
|
|
||||||
else:
|
|
||||||
nlp = util.load_model(init_path)
|
|
||||||
msg.good(f"Loaded initialized pipeline from {init_path}")
|
|
||||||
msg.divider("Training pipeline")
|
msg.divider("Training pipeline")
|
||||||
train(nlp, output_path, use_gpu=use_gpu)
|
train(nlp, output_path, use_gpu=use_gpu)
|
||||||
|
|
||||||
|
|
||||||
|
def init_nlp(
|
||||||
|
config: Config, output_path: Optional[Path], init_path: Optional[Path]
|
||||||
|
) -> None:
|
||||||
|
|
||||||
|
if init_path is not None:
|
||||||
|
nlp = util.load_model(init_path)
|
||||||
|
# TODO: how to handle provided pipeline that needs to be reinitialized?
|
||||||
|
msg.good(f"Loaded initialized pipeline from {init_path}")
|
||||||
|
return nlp
|
||||||
|
if output_path is not None:
|
||||||
|
output_init_path = output_path / "model-initial"
|
||||||
|
if must_initialize(config, output_init_path):
|
||||||
|
msg.warn("TODO:")
|
||||||
|
nlp = init_pipeline(config)
|
||||||
|
nlp.to_disk(init_path)
|
||||||
|
msg.good(f"Saved initialized pipeline to {output_init_path}")
|
||||||
|
else:
|
||||||
|
nlp = util.load_model(output_init_path)
|
||||||
|
msg.good(f"Loaded initialized pipeline from {output_init_path}")
|
||||||
|
return nlp
|
||||||
|
msg.warn("TODO:")
|
||||||
|
return init_pipeline(config)
|
||||||
|
|
||||||
|
|
||||||
def train(
|
def train(
|
||||||
nlp: Language, output_path: Optional[Path] = None, *, use_gpu: int = -1
|
nlp: Language, output_path: Optional[Path] = None, *, use_gpu: int = -1
|
||||||
) -> None:
|
) -> None:
|
||||||
# TODO: random seed, GPU allocator
|
|
||||||
# Create iterator, which yields out info after each optimization step.
|
# Create iterator, which yields out info after each optimization step.
|
||||||
config = nlp.config.interpolate()
|
config = nlp.config.interpolate()
|
||||||
if config["training"]["seed"] is not None:
|
if config["training"]["seed"] is not None:
|
||||||
|
@ -112,6 +125,9 @@ def train(
|
||||||
raw_text=raw_text,
|
raw_text=raw_text,
|
||||||
exclude=frozen_components,
|
exclude=frozen_components,
|
||||||
)
|
)
|
||||||
|
msg.info(f"Pipeline: {nlp.pipe_names}")
|
||||||
|
if frozen_components:
|
||||||
|
msg.info(f"Frozen components: {frozen_components}")
|
||||||
msg.info(f"Initial learn rate: {optimizer.learn_rate}")
|
msg.info(f"Initial learn rate: {optimizer.learn_rate}")
|
||||||
with nlp.select_pipes(disable=frozen_components):
|
with nlp.select_pipes(disable=frozen_components):
|
||||||
print_row, finalize_logger = train_logger(nlp)
|
print_row, finalize_logger = train_logger(nlp)
|
||||||
|
|
Loading…
Reference in New Issue