mirror of https://github.com/explosion/spaCy.git
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
27c00f4f22
|
@ -29,6 +29,7 @@ from . import util
|
|||
|
||||
try:
|
||||
import torch.nn
|
||||
from thinc.extra.wrappers import PyTorchWrapperRNN
|
||||
except:
|
||||
torch = None
|
||||
|
||||
|
@ -252,7 +253,7 @@ def link_vectors_to_models(vocab):
|
|||
|
||||
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
|
||||
if depth == 0:
|
||||
return noop()
|
||||
return layerize(noop())
|
||||
model = torch.nn.LSTM(nI, nO//2, depth, bidirectional=True, dropout=dropout)
|
||||
return with_square_sequences(PyTorchWrapperRNN(model))
|
||||
|
||||
|
@ -299,7 +300,6 @@ def Tok2Vec(width, embed_size, **kwargs):
|
|||
ExtractWindow(nW=1)
|
||||
>> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces))
|
||||
)
|
||||
|
||||
tok2vec = (
|
||||
FeatureExtracter(cols)
|
||||
>> with_flatten(
|
||||
|
|
|
@ -32,6 +32,11 @@ from .. import lang
|
|||
from ..lang import zh
|
||||
from ..lang import ja
|
||||
|
||||
try:
|
||||
import torch
|
||||
except ImportError:
|
||||
torch = None
|
||||
|
||||
|
||||
################
|
||||
# Data reading #
|
||||
|
@ -207,6 +212,14 @@ def write_conllu(docs, file_):
|
|||
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
|
||||
file_.write("# text = {text}\n".format(text=sent.text))
|
||||
for k, token in enumerate(sent):
|
||||
if token.head.i > sent[-1].i or token.head.i < sent[0].i:
|
||||
for word in doc[sent[0].i-10 : sent[0].i]:
|
||||
print(word.i, word.head.i, word.text, word.dep_)
|
||||
for word in sent:
|
||||
print(word.i, word.head.i, word.text, word.dep_)
|
||||
for word in doc[sent[-1].i : sent[-1].i+10]:
|
||||
print(word.i, word.head.i, word.text, word.dep_)
|
||||
raise ValueError("Invalid parse: head outside sentence (%s)" % token.text)
|
||||
file_.write(token._.get_conllu_lines(k) + '\n')
|
||||
file_.write('\n')
|
||||
|
||||
|
@ -290,9 +303,12 @@ def initialize_pipeline(nlp, docs, golds, config, device):
|
|||
for tag in gold.tags:
|
||||
if tag is not None:
|
||||
nlp.tagger.add_label(tag)
|
||||
if torch is not None and device != -1:
|
||||
torch.set_default_tensor_type('torch.cuda.FloatTensor')
|
||||
return nlp.begin_training(
|
||||
lambda: golds_to_gold_tuples(docs, golds), device=device,
|
||||
subword_features=config.subword_features, conv_depth=config.conv_depth)
|
||||
subword_features=config.subword_features, conv_depth=config.conv_depth,
|
||||
bilstm_depth=config.bilstm_depth)
|
||||
|
||||
|
||||
########################
|
||||
|
@ -356,12 +372,12 @@ class TreebankPaths(object):
|
|||
parses_dir=("Directory to write the development parses", "positional", None, Path),
|
||||
config=("Path to json formatted config file", "option", "C", Path),
|
||||
limit=("Size limit", "option", "n", int),
|
||||
use_gpu=("Use GPU", "option", "g", int),
|
||||
gpu_device=("Use GPU", "option", "g", int),
|
||||
use_oracle_segments=("Use oracle segments", "flag", "G", int),
|
||||
vectors_dir=("Path to directory with pre-trained vectors, named e.g. en/",
|
||||
"option", "v", Path),
|
||||
)
|
||||
def main(ud_dir, parses_dir, corpus, config=None, limit=0, use_gpu=-1, vectors_dir=None,
|
||||
def main(ud_dir, parses_dir, corpus, config=None, limit=0, gpu_device=-1, vectors_dir=None,
|
||||
use_oracle_segments=False):
|
||||
spacy.util.fix_random_seed()
|
||||
lang.zh.Chinese.Defaults.use_jieba = False
|
||||
|
@ -381,7 +397,7 @@ def main(ud_dir, parses_dir, corpus, config=None, limit=0, use_gpu=-1, vectors_d
|
|||
max_doc_length=config.max_doc_length,
|
||||
limit=limit)
|
||||
|
||||
optimizer = initialize_pipeline(nlp, docs, golds, config, use_gpu)
|
||||
optimizer = initialize_pipeline(nlp, docs, golds, config, gpu_device)
|
||||
|
||||
batch_sizes = compounding(config.min_batch_size, config.max_batch_size, 1.001)
|
||||
beam_prob = compounding(0.2, 0.8, 1.001)
|
||||
|
@ -415,7 +431,6 @@ def main(ud_dir, parses_dir, corpus, config=None, limit=0, use_gpu=-1, vectors_d
|
|||
parsed_docs, scores = evaluate(nlp, paths.dev.text,
|
||||
paths.dev.conllu, out_path)
|
||||
print_progress(i, losses, scores)
|
||||
_render_parses(i, parsed_docs[:50])
|
||||
|
||||
|
||||
def _render_parses(i, to_render):
|
||||
|
|
|
@ -426,6 +426,10 @@ class Language(object):
|
|||
def get_grads(W, dW, key=None):
|
||||
grads[key] = (W, dW)
|
||||
|
||||
get_grads.alpha = sgd.alpha
|
||||
get_grads.b1 = sgd.b1
|
||||
get_grads.b2 = sgd.b2
|
||||
|
||||
pipes = list(self.pipeline)
|
||||
random.shuffle(pipes)
|
||||
for name, proc in pipes:
|
||||
|
|
Loading…
Reference in New Issue