diff --git a/bin/ud/run_eval.py b/bin/ud/run_eval.py index 171687980..2da476721 100644 --- a/bin/ud/run_eval.py +++ b/bin/ud/run_eval.py @@ -7,14 +7,16 @@ import datetime from pathlib import Path import xml.etree.ElementTree as ET -from spacy.cli.ud import conll17_ud_eval -from spacy.cli.ud.ud_train import write_conllu +import conll17_ud_eval +from ud_train import write_conllu from spacy.lang.lex_attrs import word_shape from spacy.util import get_lang_class # All languages in spaCy - in UD format (note that Norwegian is 'no' instead of 'nb') -ALL_LANGUAGES = "ar, ca, da, de, el, en, es, fa, fi, fr, ga, he, hi, hr, hu, id, " \ - "it, ja, no, nl, pl, pt, ro, ru, sv, tr, ur, vi, zh" +ALL_LANGUAGES = ("af, ar, bg, bn, ca, cs, da, de, el, en, es, et, fa, fi, fr," + "ga, he, hi, hr, hu, id, is, it, ja, kn, ko, lt, lv, mr, no," + "nl, pl, pt, ro, ru, si, sk, sl, sq, sr, sv, ta, te, th, tl," + "tr, tt, uk, ur, vi, zh") # Non-parsing tasks that will be evaluated (works for default models) EVAL_NO_PARSE = ['Tokens', 'Words', 'Lemmas', 'Sentences', 'Feats'] @@ -73,10 +75,10 @@ def _contains_blinded_text(stats_xml): tree = ET.parse(stats_xml) root = tree.getroot() total_tokens = int(root.find('size/total/tokens').text) - unique_lemmas = int(root.find('lemmas').get('unique')) + unique_forms = int(root.find('forms').get('unique')) # assume the corpus is largely blinded when there are less than 1% unique tokens - return (unique_lemmas / total_tokens) < 0.01 + return (unique_forms / total_tokens) < 0.01 def fetch_all_treebanks(ud_dir, languages, corpus, best_per_language): @@ -262,22 +264,26 @@ def main(out_path, ud_dir, check_parse=False, langs=ALL_LANGUAGES, exclude_train if not exclude_trained_models: if 'de' in models: models['de'].append(load_model('de_core_news_sm')) - if 'es' in models: - models['es'].append(load_model('es_core_news_sm')) - models['es'].append(load_model('es_core_news_md')) - if 'pt' in models: - models['pt'].append(load_model('pt_core_news_sm')) - if 'it' in models: - models['it'].append(load_model('it_core_news_sm')) - if 'nl' in models: - models['nl'].append(load_model('nl_core_news_sm')) + models['de'].append(load_model('de_core_news_md')) + if 'el' in models: + models['el'].append(load_model('el_core_news_sm')) + models['el'].append(load_model('el_core_news_md')) if 'en' in models: models['en'].append(load_model('en_core_web_sm')) models['en'].append(load_model('en_core_web_md')) models['en'].append(load_model('en_core_web_lg')) + if 'es' in models: + models['es'].append(load_model('es_core_news_sm')) + models['es'].append(load_model('es_core_news_md')) if 'fr' in models: models['fr'].append(load_model('fr_core_news_sm')) models['fr'].append(load_model('fr_core_news_md')) + if 'it' in models: + models['it'].append(load_model('it_core_news_sm')) + if 'nl' in models: + models['nl'].append(load_model('nl_core_news_sm')) + if 'pt' in models: + models['pt'].append(load_model('pt_core_news_sm')) with out_path.open(mode='w', encoding='utf-8') as out_file: run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks) diff --git a/bin/ud/ud_run_test.py b/bin/ud/ud_run_test.py index 1c529c831..de01cf350 100644 --- a/bin/ud/ud_run_test.py +++ b/bin/ud/ud_run_test.py @@ -109,15 +109,13 @@ def write_conllu(docs, file_): merger = Matcher(docs[0].vocab) merger.add("SUBTOK", None, [{"DEP": "subtok", "op": "+"}]) for i, doc in enumerate(docs): - matches = merger(doc) + matches = [] + if doc.is_parsed: + matches = merger(doc) spans = [doc[start : end + 1] for _, start, end in matches] with doc.retokenize() as retokenizer: for span in spans: retokenizer.merge(span) - # TODO: This shouldn't be necessary? Should be handled in merge - for word in doc: - if word.i == word.head.i: - word.dep_ = "ROOT" file_.write("# newdoc id = {i}\n".format(i=i)) for j, sent in enumerate(doc.sents): file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j)) diff --git a/bin/ud/ud_train.py b/bin/ud/ud_train.py index 627f32e05..b398a7a0e 100644 --- a/bin/ud/ud_train.py +++ b/bin/ud/ud_train.py @@ -25,7 +25,7 @@ import itertools import random import numpy.random -from . import conll17_ud_eval +import conll17_ud_eval from spacy import lang from spacy.lang import zh @@ -229,7 +229,9 @@ def write_conllu(docs, file_): merger = Matcher(docs[0].vocab) merger.add("SUBTOK", None, [{"DEP": "subtok", "op": "+"}]) for i, doc in enumerate(docs): - matches = merger(doc) + matches = [] + if doc.is_parsed: + matches = merger(doc) spans = [doc[start : end + 1] for _, start, end in matches] seen_tokens = set() with doc.retokenize() as retokenizer: @@ -321,9 +323,9 @@ def get_token_conllu(token, i): lines.append("\t".join(fields)) return "\n".join(lines) -Token.set_extension("get_conllu_lines", method=get_token_conllu) -Token.set_extension("begins_fused", default=False) -Token.set_extension("inside_fused", default=False) +Token.set_extension("get_conllu_lines", method=get_token_conllu, force=True) +Token.set_extension("begins_fused", default=False, force=True) +Token.set_extension("inside_fused", default=False, force=True) ##################