mirror of https://github.com/explosion/spaCy.git
Merge pull request #570 from kendricktan/master
Fixed training examples
This commit is contained in:
commit
2101ec085a
|
@ -6,6 +6,7 @@ import random
|
||||||
import spacy
|
import spacy
|
||||||
from spacy.pipeline import EntityRecognizer
|
from spacy.pipeline import EntityRecognizer
|
||||||
from spacy.gold import GoldParse
|
from spacy.gold import GoldParse
|
||||||
|
from spacy.tagger import Tagger
|
||||||
|
|
||||||
|
|
||||||
def train_ner(nlp, train_data, entity_types):
|
def train_ner(nlp, train_data, entity_types):
|
||||||
|
@ -29,6 +30,15 @@ def main(model_dir=None):
|
||||||
|
|
||||||
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
|
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
|
||||||
|
|
||||||
|
# v1.1.2 onwards
|
||||||
|
if nlp.tagger is None:
|
||||||
|
print('---- WARNING ----')
|
||||||
|
print('Data directory not found')
|
||||||
|
print('please run: `python -m spacy.en.download –force all` for better performance')
|
||||||
|
print('Using feature templates for tagging')
|
||||||
|
print('-----------------')
|
||||||
|
nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
|
||||||
|
|
||||||
train_data = [
|
train_data = [
|
||||||
(
|
(
|
||||||
'Who is Shaka Khan?',
|
'Who is Shaka Khan?',
|
||||||
|
|
|
@ -10,8 +10,9 @@ from pathlib import Path
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
from spacy.tagger import Tagger
|
from spacy.tagger import Tagger
|
||||||
from spacy.tokens import Doc
|
from spacy.tokens import Doc
|
||||||
import random
|
from spacy.gold import GoldParse
|
||||||
|
|
||||||
|
import random
|
||||||
|
|
||||||
# You need to define a mapping from your data's part-of-speech tag names to the
|
# You need to define a mapping from your data's part-of-speech tag names to the
|
||||||
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
||||||
|
@ -20,24 +21,25 @@ import random
|
||||||
# You may also specify morphological features for your tags, from the universal
|
# You may also specify morphological features for your tags, from the universal
|
||||||
# scheme.
|
# scheme.
|
||||||
TAG_MAP = {
|
TAG_MAP = {
|
||||||
'N': {"pos": "NOUN"},
|
'N': {"pos": "NOUN"},
|
||||||
'V': {"pos": "VERB"},
|
'V': {"pos": "VERB"},
|
||||||
'J': {"pos": "ADJ"}
|
'J': {"pos": "ADJ"}
|
||||||
}
|
}
|
||||||
|
|
||||||
# Usually you'll read this in, of course. Data formats vary.
|
# Usually you'll read this in, of course. Data formats vary.
|
||||||
# Ensure your strings are unicode.
|
# Ensure your strings are unicode.
|
||||||
DATA = [
|
DATA = [
|
||||||
(
|
(
|
||||||
["I", "like", "green", "eggs"],
|
["I", "like", "green", "eggs"],
|
||||||
["N", "V", "J", "N"]
|
["N", "V", "J", "N"]
|
||||||
),
|
),
|
||||||
(
|
(
|
||||||
["Eat", "blue", "ham"],
|
["Eat", "blue", "ham"],
|
||||||
["V", "J", "N"]
|
["V", "J", "N"]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def ensure_dir(path):
|
def ensure_dir(path):
|
||||||
if not path.exists():
|
if not path.exists():
|
||||||
path.mkdir()
|
path.mkdir()
|
||||||
|
@ -54,13 +56,14 @@ def main(output_dir=None):
|
||||||
# The default_templates argument is where features are specified. See
|
# The default_templates argument is where features are specified. See
|
||||||
# spacy/tagger.pyx for the defaults.
|
# spacy/tagger.pyx for the defaults.
|
||||||
tagger = Tagger(vocab)
|
tagger = Tagger(vocab)
|
||||||
for i in range(5):
|
for i in range(25):
|
||||||
for words, tags in DATA:
|
for words, tags in DATA:
|
||||||
doc = Doc(vocab, words=words)
|
doc = Doc(vocab, words=words)
|
||||||
tagger.update(doc, tags)
|
gold = GoldParse(doc, tags=tags)
|
||||||
|
tagger.update(doc, gold)
|
||||||
random.shuffle(DATA)
|
random.shuffle(DATA)
|
||||||
tagger.model.end_training()
|
tagger.model.end_training()
|
||||||
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True]*4))
|
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True] * 4))
|
||||||
tagger(doc)
|
tagger(doc)
|
||||||
for word in doc:
|
for word in doc:
|
||||||
print(word.text, word.tag_, word.pos_)
|
print(word.text, word.tag_, word.pos_)
|
||||||
|
|
Loading…
Reference in New Issue