mirror of https://github.com/explosion/spaCy.git
Merge pull request #570 from kendricktan/master
Fixed training examples
This commit is contained in:
commit
2101ec085a
|
@ -6,6 +6,7 @@ import random
|
|||
import spacy
|
||||
from spacy.pipeline import EntityRecognizer
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.tagger import Tagger
|
||||
|
||||
|
||||
def train_ner(nlp, train_data, entity_types):
|
||||
|
@ -29,6 +30,15 @@ def main(model_dir=None):
|
|||
|
||||
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
|
||||
|
||||
# v1.1.2 onwards
|
||||
if nlp.tagger is None:
|
||||
print('---- WARNING ----')
|
||||
print('Data directory not found')
|
||||
print('please run: `python -m spacy.en.download –force all` for better performance')
|
||||
print('Using feature templates for tagging')
|
||||
print('-----------------')
|
||||
nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
|
||||
|
||||
train_data = [
|
||||
(
|
||||
'Who is Shaka Khan?',
|
||||
|
|
|
@ -10,8 +10,9 @@ from pathlib import Path
|
|||
from spacy.vocab import Vocab
|
||||
from spacy.tagger import Tagger
|
||||
from spacy.tokens import Doc
|
||||
import random
|
||||
from spacy.gold import GoldParse
|
||||
|
||||
import random
|
||||
|
||||
# You need to define a mapping from your data's part-of-speech tag names to the
|
||||
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
|
||||
|
@ -20,24 +21,25 @@ import random
|
|||
# You may also specify morphological features for your tags, from the universal
|
||||
# scheme.
|
||||
TAG_MAP = {
|
||||
'N': {"pos": "NOUN"},
|
||||
'V': {"pos": "VERB"},
|
||||
'J': {"pos": "ADJ"}
|
||||
}
|
||||
'N': {"pos": "NOUN"},
|
||||
'V': {"pos": "VERB"},
|
||||
'J': {"pos": "ADJ"}
|
||||
}
|
||||
|
||||
# Usually you'll read this in, of course. Data formats vary.
|
||||
# Ensure your strings are unicode.
|
||||
DATA = [
|
||||
(
|
||||
["I", "like", "green", "eggs"],
|
||||
["N", "V", "J", "N"]
|
||||
["N", "V", "J", "N"]
|
||||
),
|
||||
(
|
||||
["Eat", "blue", "ham"],
|
||||
["V", "J", "N"]
|
||||
["V", "J", "N"]
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
|
||||
def ensure_dir(path):
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
|
@ -49,18 +51,19 @@ def main(output_dir=None):
|
|||
ensure_dir(output_dir)
|
||||
ensure_dir(output_dir / "pos")
|
||||
ensure_dir(output_dir / "vocab")
|
||||
|
||||
|
||||
vocab = Vocab(tag_map=TAG_MAP)
|
||||
# The default_templates argument is where features are specified. See
|
||||
# spacy/tagger.pyx for the defaults.
|
||||
tagger = Tagger(vocab)
|
||||
for i in range(5):
|
||||
for i in range(25):
|
||||
for words, tags in DATA:
|
||||
doc = Doc(vocab, words=words)
|
||||
tagger.update(doc, tags)
|
||||
gold = GoldParse(doc, tags=tags)
|
||||
tagger.update(doc, gold)
|
||||
random.shuffle(DATA)
|
||||
tagger.model.end_training()
|
||||
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True]*4))
|
||||
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True] * 4))
|
||||
tagger(doc)
|
||||
for word in doc:
|
||||
print(word.text, word.tag_, word.pos_)
|
||||
|
|
Loading…
Reference in New Issue