Merge pull request #570 from kendricktan/master

Fixed training examples
This commit is contained in:
Matthew Honnibal 2016-10-24 21:36:54 +11:00 committed by GitHub
commit 2101ec085a
2 changed files with 25 additions and 12 deletions

View File

@ -6,6 +6,7 @@ import random
import spacy
from spacy.pipeline import EntityRecognizer
from spacy.gold import GoldParse
from spacy.tagger import Tagger
def train_ner(nlp, train_data, entity_types):
@ -29,6 +30,15 @@ def main(model_dir=None):
nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
# v1.1.2 onwards
if nlp.tagger is None:
print('---- WARNING ----')
print('Data directory not found')
print('please run: `python -m spacy.en.download force all` for better performance')
print('Using feature templates for tagging')
print('-----------------')
nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
train_data = [
(
'Who is Shaka Khan?',

View File

@ -10,8 +10,9 @@ from pathlib import Path
from spacy.vocab import Vocab
from spacy.tagger import Tagger
from spacy.tokens import Doc
import random
from spacy.gold import GoldParse
import random
# You need to define a mapping from your data's part-of-speech tag names to the
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
@ -20,24 +21,25 @@ import random
# You may also specify morphological features for your tags, from the universal
# scheme.
TAG_MAP = {
'N': {"pos": "NOUN"},
'V': {"pos": "VERB"},
'J': {"pos": "ADJ"}
}
'N': {"pos": "NOUN"},
'V': {"pos": "VERB"},
'J': {"pos": "ADJ"}
}
# Usually you'll read this in, of course. Data formats vary.
# Ensure your strings are unicode.
DATA = [
(
["I", "like", "green", "eggs"],
["N", "V", "J", "N"]
["N", "V", "J", "N"]
),
(
["Eat", "blue", "ham"],
["V", "J", "N"]
["V", "J", "N"]
)
]
def ensure_dir(path):
if not path.exists():
path.mkdir()
@ -49,18 +51,19 @@ def main(output_dir=None):
ensure_dir(output_dir)
ensure_dir(output_dir / "pos")
ensure_dir(output_dir / "vocab")
vocab = Vocab(tag_map=TAG_MAP)
# The default_templates argument is where features are specified. See
# spacy/tagger.pyx for the defaults.
tagger = Tagger(vocab)
for i in range(5):
for i in range(25):
for words, tags in DATA:
doc = Doc(vocab, words=words)
tagger.update(doc, tags)
gold = GoldParse(doc, tags=tags)
tagger.update(doc, gold)
random.shuffle(DATA)
tagger.model.end_training()
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True]*4))
doc = Doc(vocab, orths_and_spaces=zip(["I", "like", "blue", "eggs"], [True] * 4))
tagger(doc)
for word in doc:
print(word.text, word.tag_, word.pos_)