mirror of https://github.com/explosion/spaCy.git
Matcher support for Span as well as Doc (#5113)
* Matcher support for Span, as well as Doc #5056 * Removes an import unused * Signed contributors agreement * Code optimization and better test * Add error message for bad Matcher call argument * Fix merging
This commit is contained in:
parent
1eef60c658
commit
1ca32d8f9c
|
@ -5,7 +5,7 @@ This spaCy Contributor Agreement (**"SCA"**) is based on the
|
|||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
|
|
|
@ -556,6 +556,7 @@ class Errors(object):
|
|||
"({new_dim}) is not the same as the current vector dimension "
|
||||
"({curr_dim}).")
|
||||
E194 = ("Unable to aligned mismatched text '{text}' and words '{words}'.")
|
||||
E195 = ("Matcher can be called on {good} only, got {got}.")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
|
|
@ -14,6 +14,7 @@ from ..typedefs cimport attr_t
|
|||
from ..structs cimport TokenC
|
||||
from ..vocab cimport Vocab
|
||||
from ..tokens.doc cimport Doc, get_token_attr
|
||||
from ..tokens.span cimport Span
|
||||
from ..tokens.token cimport Token
|
||||
from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA
|
||||
|
||||
|
@ -211,22 +212,29 @@ cdef class Matcher:
|
|||
else:
|
||||
yield doc
|
||||
|
||||
def __call__(self, Doc doc):
|
||||
def __call__(self, object doc_or_span):
|
||||
"""Find all token sequences matching the supplied pattern.
|
||||
|
||||
doc (Doc): The document to match over.
|
||||
doc_or_span (Doc or Span): The document to match over.
|
||||
RETURNS (list): A list of `(key, start, end)` tuples,
|
||||
describing the matches. A match tuple describes a span
|
||||
`doc[start:end]`. The `label_id` and `key` are both integers.
|
||||
"""
|
||||
if isinstance(doc_or_span, Doc):
|
||||
doc = doc_or_span
|
||||
length = len(doc)
|
||||
elif isinstance(doc_or_span, Span):
|
||||
doc = doc_or_span.doc
|
||||
length = doc_or_span.end - doc_or_span.start
|
||||
else:
|
||||
raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doc_or_span).__name__))
|
||||
if len(set([LEMMA, POS, TAG]) & self._seen_attrs) > 0 \
|
||||
and not doc.is_tagged:
|
||||
raise ValueError(Errors.E155.format())
|
||||
if DEP in self._seen_attrs and not doc.is_parsed:
|
||||
raise ValueError(Errors.E156.format())
|
||||
matches = find_matches(&self.patterns[0], self.patterns.size(), doc,
|
||||
extensions=self._extensions,
|
||||
predicates=self._extra_predicates)
|
||||
matches = find_matches(&self.patterns[0], self.patterns.size(), doc_or_span, length,
|
||||
extensions=self._extensions, predicates=self._extra_predicates)
|
||||
for i, (key, start, end) in enumerate(matches):
|
||||
on_match = self._callbacks.get(key, None)
|
||||
if on_match is not None:
|
||||
|
@ -248,9 +256,7 @@ def unpickle_matcher(vocab, patterns, callbacks):
|
|||
return matcher
|
||||
|
||||
|
||||
|
||||
cdef find_matches(TokenPatternC** patterns, int n, Doc doc, extensions=None,
|
||||
predicates=tuple()):
|
||||
cdef find_matches(TokenPatternC** patterns, int n, object doc_or_span, int length, extensions=None, predicates=tuple()):
|
||||
"""Find matches in a doc, with a compiled array of patterns. Matches are
|
||||
returned as a list of (id, start, end) tuples.
|
||||
|
||||
|
@ -268,18 +274,18 @@ cdef find_matches(TokenPatternC** patterns, int n, Doc doc, extensions=None,
|
|||
cdef int i, j, nr_extra_attr
|
||||
cdef Pool mem = Pool()
|
||||
output = []
|
||||
if doc.length == 0:
|
||||
if length == 0:
|
||||
# avoid any processing or mem alloc if the document is empty
|
||||
return output
|
||||
if len(predicates) > 0:
|
||||
predicate_cache = <char*>mem.alloc(doc.length * len(predicates), sizeof(char))
|
||||
predicate_cache = <char*>mem.alloc(length * len(predicates), sizeof(char))
|
||||
if extensions is not None and len(extensions) >= 1:
|
||||
nr_extra_attr = max(extensions.values()) + 1
|
||||
extra_attr_values = <attr_t*>mem.alloc(doc.length * nr_extra_attr, sizeof(attr_t))
|
||||
extra_attr_values = <attr_t*>mem.alloc(length * nr_extra_attr, sizeof(attr_t))
|
||||
else:
|
||||
nr_extra_attr = 0
|
||||
extra_attr_values = <attr_t*>mem.alloc(doc.length, sizeof(attr_t))
|
||||
for i, token in enumerate(doc):
|
||||
extra_attr_values = <attr_t*>mem.alloc(length, sizeof(attr_t))
|
||||
for i, token in enumerate(doc_or_span):
|
||||
for name, index in extensions.items():
|
||||
value = token._.get(name)
|
||||
if isinstance(value, basestring):
|
||||
|
@ -287,11 +293,11 @@ cdef find_matches(TokenPatternC** patterns, int n, Doc doc, extensions=None,
|
|||
extra_attr_values[i * nr_extra_attr + index] = value
|
||||
# Main loop
|
||||
cdef int nr_predicate = len(predicates)
|
||||
for i in range(doc.length):
|
||||
for i in range(length):
|
||||
for j in range(n):
|
||||
states.push_back(PatternStateC(patterns[j], i, 0))
|
||||
transition_states(states, matches, predicate_cache,
|
||||
doc[i], extra_attr_values, predicates)
|
||||
doc_or_span[i], extra_attr_values, predicates)
|
||||
extra_attr_values += nr_extra_attr
|
||||
predicate_cache += len(predicates)
|
||||
# Handle matches that end in 0-width patterns
|
||||
|
|
|
@ -6,7 +6,6 @@ import re
|
|||
from mock import Mock
|
||||
from spacy.matcher import Matcher, DependencyMatcher
|
||||
from spacy.tokens import Doc, Token
|
||||
|
||||
from ..doc.test_underscore import clean_underscore # noqa: F401
|
||||
|
||||
|
||||
|
@ -470,3 +469,13 @@ def test_matcher_callback(en_vocab):
|
|||
doc = Doc(en_vocab, words=["This", "is", "a", "test", "."])
|
||||
matches = matcher(doc)
|
||||
mock.assert_called_once_with(matcher, doc, 0, matches)
|
||||
|
||||
|
||||
def test_matcher_span(matcher):
|
||||
text = "JavaScript is good but Java is better"
|
||||
doc = Doc(matcher.vocab, words=text.split())
|
||||
span_js = doc[:3]
|
||||
span_java = doc[4:]
|
||||
assert len(matcher(doc)) == 2
|
||||
assert len(matcher(span_js)) == 1
|
||||
assert len(matcher(span_java)) == 1
|
||||
|
|
Loading…
Reference in New Issue