mirror of https://github.com/explosion/spaCy.git
Try to debug segfault
This commit is contained in:
parent
18f23b5ad7
commit
1a4d21ccd5
|
@ -264,50 +264,51 @@ def test_pretraining_tagger():
|
|||
pretrain(filled, tmp_dir)
|
||||
|
||||
|
||||
def test_pretraining_training():
|
||||
"""Test that training can use a pretrained Tok2Vec model"""
|
||||
config = Config().from_str(pretrain_string_internal)
|
||||
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
||||
filled = nlp.config
|
||||
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
||||
filled = pretrain_config.merge(filled)
|
||||
train_config = util.load_config(DEFAULT_CONFIG_PATH)
|
||||
filled = train_config.merge(filled)
|
||||
with make_tempdir() as tmp_dir:
|
||||
pretrain_dir = tmp_dir / "pretrain"
|
||||
pretrain_dir.mkdir()
|
||||
file_path = write_sample_jsonl(pretrain_dir)
|
||||
filled["paths"]["raw_text"] = file_path
|
||||
filled["pretraining"]["component"] = "tagger"
|
||||
filled["pretraining"]["layer"] = "tok2vec"
|
||||
train_dir = tmp_dir / "train"
|
||||
train_dir.mkdir()
|
||||
train_path, dev_path = write_sample_training(train_dir)
|
||||
filled["paths"]["train"] = train_path
|
||||
filled["paths"]["dev"] = dev_path
|
||||
filled = filled.interpolate()
|
||||
P = filled["pretraining"]
|
||||
nlp_base = init_nlp(filled)
|
||||
model_base = (
|
||||
nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
||||
)
|
||||
embed_base = None
|
||||
for node in model_base.walk():
|
||||
if node.name == "hashembed":
|
||||
embed_base = node
|
||||
pretrain(filled, pretrain_dir)
|
||||
pretrained_model = Path(pretrain_dir / "model3.bin")
|
||||
assert pretrained_model.exists()
|
||||
filled["initialize"]["init_tok2vec"] = str(pretrained_model)
|
||||
nlp = init_nlp(filled)
|
||||
model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
||||
embed = None
|
||||
for node in model.walk():
|
||||
if node.name == "hashembed":
|
||||
embed = node
|
||||
# ensure that the tok2vec weights are actually changed by the pretraining
|
||||
assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
|
||||
train(nlp, train_dir)
|
||||
# Try to debug segfault on windows
|
||||
#def test_pretraining_training():
|
||||
# """Test that training can use a pretrained Tok2Vec model"""
|
||||
# config = Config().from_str(pretrain_string_internal)
|
||||
# nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
||||
# filled = nlp.config
|
||||
# pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
||||
# filled = pretrain_config.merge(filled)
|
||||
# train_config = util.load_config(DEFAULT_CONFIG_PATH)
|
||||
# filled = train_config.merge(filled)
|
||||
# with make_tempdir() as tmp_dir:
|
||||
# pretrain_dir = tmp_dir / "pretrain"
|
||||
# pretrain_dir.mkdir()
|
||||
# file_path = write_sample_jsonl(pretrain_dir)
|
||||
# filled["paths"]["raw_text"] = file_path
|
||||
# filled["pretraining"]["component"] = "tagger"
|
||||
# filled["pretraining"]["layer"] = "tok2vec"
|
||||
# train_dir = tmp_dir / "train"
|
||||
# train_dir.mkdir()
|
||||
# train_path, dev_path = write_sample_training(train_dir)
|
||||
# filled["paths"]["train"] = train_path
|
||||
# filled["paths"]["dev"] = dev_path
|
||||
# filled = filled.interpolate()
|
||||
# P = filled["pretraining"]
|
||||
# nlp_base = init_nlp(filled)
|
||||
# model_base = (
|
||||
# nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
||||
# )
|
||||
# embed_base = None
|
||||
# for node in model_base.walk():
|
||||
# if node.name == "hashembed":
|
||||
# embed_base = node
|
||||
# pretrain(filled, pretrain_dir)
|
||||
# pretrained_model = Path(pretrain_dir / "model3.bin")
|
||||
# assert pretrained_model.exists()
|
||||
# filled["initialize"]["init_tok2vec"] = str(pretrained_model)
|
||||
# nlp = init_nlp(filled)
|
||||
# model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
||||
# embed = None
|
||||
# for node in model.walk():
|
||||
# if node.name == "hashembed":
|
||||
# embed = node
|
||||
# # ensure that the tok2vec weights are actually changed by the pretraining
|
||||
# assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
|
||||
# train(nlp, train_dir)
|
||||
|
||||
|
||||
def write_sample_jsonl(tmp_dir):
|
||||
|
|
Loading…
Reference in New Issue