Modernise sentence boundary detection tests and don't depend on models (where possible)

This commit is contained in:
Ines Montani 2017-01-11 23:53:08 +01:00
parent 0cdb6ea61d
commit 1a3984742c
1 changed files with 42 additions and 115 deletions

View File

@ -1,131 +1,58 @@
# coding: utf-8
from __future__ import unicode_literals from __future__ import unicode_literals
from ...tokens import Doc
from ..util import get_doc, apply_transition_sequence
import pytest import pytest
from spacy.tokens import Doc
from spacy.syntax.nonproj import PseudoProjectivity
@pytest.mark.models @pytest.mark.parametrize('text', ["A test sentence"])
def test_single_period(EN): @pytest.mark.parametrize('punct', ['.', '!', '?', ''])
string = 'A test sentence.' def test_parser_sbd_single_punct(en_tokenizer, text, punct):
words = EN(string) heads = [2, 1, 0, -1] if punct else [2, 1, 0]
assert len(words) == 4 tokens = en_tokenizer(text + punct)
assert len(list(words.sents)) == 1 doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
assert sum(len(sent) for sent in words.sents) == len(words) assert len(doc) == 4 if punct else 3
assert len(list(doc.sents)) == 1
assert sum(len(sent) for sent in doc.sents) == len(doc)
@pytest.mark.models def test_parser_sentence_breaks(en_tokenizer, en_parser):
def test_single_no_period(EN): text = "This is a sentence . This is another one ."
string = 'A test sentence' heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3]
words = EN(string) deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det',
assert len(words) == 3 'attr', 'punct']
assert len(list(words.sents)) == 1 transition = ['L-nsubj', 'S', 'L-det', 'R-attr', 'D', 'R-punct', 'B-ROOT',
assert sum(len(sent) for sent in words.sents) == len(words) 'L-nsubj', 'S', 'L-attr', 'R-attr', 'D', 'R-punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
apply_transition_sequence(en_parser, doc, transition)
@pytest.mark.models
def test_single_exclamation(EN):
string = 'A test sentence!'
words = EN(string)
assert len(words) == 4
assert len(list(words.sents)) == 1
assert sum(len(sent) for sent in words.sents) == len(words)
@pytest.mark.models
def test_single_question(EN):
string = 'A test sentence?'
words = EN(string, tag=False, parse=True)
assert len(words) == 4
assert len(list(words.sents)) == 1
assert sum(len(sent) for sent in words.sents) == len(words)
@pytest.mark.models
def test_sentence_breaks(EN):
doc = EN.tokenizer.tokens_from_list(u'This is a sentence . This is another one .'.split(' '))
EN.tagger(doc)
with EN.parser.step_through(doc) as stepwise:
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('L-nsubj')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('S')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('L-det')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('R-attr')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('D')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('R-punct')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('B-ROOT')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('L-nsubj')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('S')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('L-attr')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('R-attr')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('D')
assert EN.parser.moves.is_valid(stepwise.stcls,'B-ROOT')
stepwise.transition('R-punct')
assert len(list(doc.sents)) == 2 assert len(list(doc.sents)) == 2
for tok in doc: for token in doc:
assert tok.dep != 0 or tok.is_space assert token.dep != 0 or token.is_space
assert [ tok.head.i for tok in doc ] == [1,1,3,1,1,6,6,8,6,6] assert [token.head.i for token in doc ] == [1, 1, 3, 1, 1, 6, 6, 8, 6, 6]
def apply_transition_sequence(model, doc, sequence): # Currently, there's no way of setting the serializer data for the parser
with model.parser.step_through(doc) as stepwise: # without loading the models, so we can't remove the model dependency here yet.
for transition in sequence:
stepwise.transition(transition)
@pytest.mark.models @pytest.mark.models
def test_sbd_serialization_projective(EN): def test_parser_sbd_serialization_projective(EN):
""" """Test that before and after serialization, the sentence boundaries are
test that before and after serialization, the sentence boundaries are the same. the same."""
"""
example = EN.tokenizer.tokens_from_list(u"I bought a couch from IKEA. It was n't very comfortable .".split(' '))
EN.tagger(example)
apply_transition_sequence(EN, example, ['L-nsubj','S','L-det','R-dobj','D','R-prep','R-pobj','B-ROOT','L-nsubj','R-neg','D','S','L-advmod','R-acomp','D','R-punct'])
example_serialized = Doc(EN.vocab).from_bytes(example.to_bytes())
assert example.to_bytes() == example_serialized.to_bytes()
assert [s.text for s in example.sents] == [s.text for s in example_serialized.sents]
# TODO:
# @pytest.mark.models
# def test_sbd_serialization_nonprojective(DE):
# """
# test that before and after serialization, the sentence boundaries are the same in a non-projective sentence.
# """
# example = EN.tokenizer.tokens_from_list(u"Den Mann hat Peter nicht gesehen . Er war zu langsam .".split(' '))
# EN.tagger(example)
# apply_transition_sequence(EN, example, ['L-nk','L-oa||oc','R-sb','D','S','L-ng','B-ROOT','L-nsubj','R-neg','D','S','L-advmod','R-acomp','D','R-punct'])
# print [(t.dep_,t.head.i) for t in example]
# example_serialized = Doc(EN.vocab).from_bytes(example.to_bytes())
# assert example.to_bytes() == example_serialized.to_bytes()
# assert [s.text for s in example.sents] == [s.text for s in example_serialized.sents]
text = "I bought a couch from IKEA It wasn't very comfortable."
transition = ['L-nsubj', 'S', 'L-det', 'R-dobj', 'D', 'R-prep', 'R-pobj',
'B-ROOT', 'L-nsubj', 'R-neg', 'D', 'S', 'L-advmod',
'R-acomp', 'D', 'R-punct']
doc = EN.tokenizer(text)
apply_transition_sequence(EN.parser, doc, transition)
doc_serialized = Doc(EN.vocab).from_bytes(doc.to_bytes())
assert doc.is_parsed == True
assert doc_serialized.is_parsed == True
assert doc.to_bytes() == doc_serialized.to_bytes()
assert [s.text for s in doc.sents] == [s.text for s in doc_serialized.sents]