Add language-specific syntax iterators to en and de

This commit is contained in:
ines 2017-05-17 11:37:48 +02:00
parent 3cc6fe1484
commit 1a05078c79
4 changed files with 85 additions and 0 deletions

View File

@ -5,6 +5,7 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .tag_map import TAG_MAP
from .stop_words import STOP_WORDS
from .lemmatizer import LOOKUP
from .syntax_iterators import SYNTAX_ITERATORS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...language import Language
@ -23,6 +24,7 @@ class German(Language):
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
tag_map = dict(TAG_MAP)
stop_words = set(STOP_WORDS)
syntax_iterators = dict(SYNTAX_ITERATORS)
@classmethod
def create_lemmatizer(cls, nlp=None):

View File

@ -0,0 +1,38 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON
def noun_chunks(obj):
"""
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
"""
# this iterator extracts spans headed by NOUNs starting from the left-most
# syntactic dependent until the NOUN itself for close apposition and
# measurement construction, the span is sometimes extended to the right of
# the NOUN. Example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee"
# and not just "eine Tasse", same for "das Thema Familie".
labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app']
doc = obj.doc # Ensure works on both Doc and Span.
np_label = doc.vocab.strings['NP']
np_deps = set(doc.vocab.strings[label] for label in labels)
close_app = doc.vocab.strings['nk']
rbracket = 0
for i, word in enumerate(obj):
if i < rbracket:
continue
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
rbracket = word.i+1
# try to extend the span to the right
# to capture close apposition/measurement constructions
for rdep in doc[word.i].rights:
if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app:
rbracket = rdep.i+1
yield word.left_edge.i, rbracket, np_label
SYNTAX_ITERATORS = {
'noun_chunks': noun_chunks
}

View File

@ -7,6 +7,7 @@ from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .morph_rules import MORPH_RULES
from .lemmatizer import LEMMA_RULES, LEMMA_INDEX, LEMMA_EXC
from .syntax_iterators import SYNTAX_ITERATORS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...language import Language
@ -29,6 +30,7 @@ class English(Language):
lemma_rules = dict(LEMMA_RULES)
lemma_index = dict(LEMMA_INDEX)
lemma_exc = dict(LEMMA_EXC)
sytax_iterators = dict(SYNTAX_ITERATORS)
__all__ = ['English']

View File

@ -0,0 +1,43 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON
def noun_chunks(obj):
"""
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
"""
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
'attr', 'ROOT']
doc = obj.doc # Ensure works on both Doc and Span.
np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings['conj']
np_label = doc.vocab.strings['NP']
seen = set()
for i, word in enumerate(obj):
if word.pos not in (NOUN, PROPN, PRON):
continue
# Prevent nested chunks from being produced
if word.i in seen:
continue
if word.dep in np_deps:
if any(w.i in seen for w in word.subtree):
continue
seen.update(j for j in range(word.left_edge.i, word.i+1))
yield word.left_edge.i, word.i+1, np_label
elif word.dep == conj:
head = word.head
while head.dep == conj and head.head.i < head.i:
head = head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in np_deps:
if any(w.i in seen for w in word.subtree):
continue
seen.update(j for j in range(word.left_edge.i, word.i+1))
yield word.left_edge.i, word.i+1, np_label
SYNTAX_ITERATORS = {
'noun_chunks': noun_chunks
}