mirror of https://github.com/explosion/spaCy.git
Modernise space attachment parser tests and don't depend on models
This commit is contained in:
parent
69778924c8
commit
19c4132097
|
@ -1,90 +1,75 @@
|
||||||
|
# coding: utf-8
|
||||||
from __future__ import unicode_literals
|
from __future__ import unicode_literals
|
||||||
|
|
||||||
|
from ...tokens.doc import Doc
|
||||||
|
from ...attrs import HEAD
|
||||||
|
from ..util import get_doc, apply_transition_sequence
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import numpy
|
|
||||||
from spacy.attrs import HEAD
|
|
||||||
|
|
||||||
def make_doc(EN, sentstr):
|
|
||||||
sent = sentstr.split(' ')
|
|
||||||
doc = EN.tokenizer.tokens_from_list(sent)
|
|
||||||
EN.tagger(doc)
|
|
||||||
return doc
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.models
|
def test_parser_space_attachment(en_tokenizer):
|
||||||
def test_space_attachment(EN):
|
text = "This is a test.\nTo ensure spaces are attached well."
|
||||||
sentence = 'This is a test.\nTo ensure spaces are attached well.'
|
heads = [1, 0, 1, -2, -3, -1, 1, 4, -1, 2, 1, 0, -1, -2]
|
||||||
doc = EN(sentence)
|
tokens = en_tokenizer(text)
|
||||||
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
||||||
|
|
||||||
for sent in doc.sents:
|
for sent in doc.sents:
|
||||||
if len(sent) == 1:
|
if len(sent) == 1:
|
||||||
assert not sent[-1].is_space
|
assert not sent[-1].is_space
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.models
|
def test_parser_sentence_space(en_tokenizer):
|
||||||
def test_sentence_space(EN):
|
text = "I look forward to using Thingamajig. I've been told it will make my life easier..."
|
||||||
text = ('''I look forward to using Thingamajig. I've been told it will '''
|
heads = [1, 0, -1, -2, -1, -1, -5, -1, 3, 2, 1, 0, 2, 1, -3, 1, 1, -3, -7]
|
||||||
'''make my life easier...''')
|
deps = ['nsubj', 'ROOT', 'advmod', 'prep', 'pcomp', 'dobj', 'punct', '',
|
||||||
doc = EN(text)
|
'nsubjpass', 'aux', 'auxpass', 'ROOT', 'nsubj', 'aux', 'ccomp',
|
||||||
|
'poss', 'nsubj', 'ccomp', 'punct']
|
||||||
|
tokens = en_tokenizer(text)
|
||||||
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
|
||||||
assert len(list(doc.sents)) == 2
|
assert len(list(doc.sents)) == 2
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.models
|
def test_parser_space_attachment_leading(en_tokenizer, en_parser):
|
||||||
def test_space_attachment_leading_space(EN):
|
text = "\t \n This is a sentence ."
|
||||||
# leading space token
|
heads = [1, 1, 0, 1, -2, -3]
|
||||||
doc = make_doc(EN, '\t \n This is a sentence .')
|
tokens = en_tokenizer(text)
|
||||||
assert doc[0].is_space
|
doc = get_doc(tokens.vocab, text.split(' '), heads=heads)
|
||||||
assert doc[1].is_space
|
assert doc[0].is_space
|
||||||
assert doc[2].orth_ == 'This'
|
assert doc[1].is_space
|
||||||
with EN.parser.step_through(doc) as stepwise:
|
assert doc[2].text == 'This'
|
||||||
pass
|
with en_parser.step_through(doc) as stepwise:
|
||||||
assert doc[0].head.i == 2
|
pass
|
||||||
assert doc[1].head.i == 2
|
assert doc[0].head.i == 2
|
||||||
assert stepwise.stack == set([2])
|
assert doc[1].head.i == 2
|
||||||
|
assert stepwise.stack == set([2])
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.models
|
def test_parser_space_attachment_intermediate_trailing(en_tokenizer, en_parser):
|
||||||
def test_space_attachment_intermediate_and_trailing_space(EN):
|
text = "This is \t a \t\n \n sentence . \n\n \n"
|
||||||
# intermediate and trailing space tokens
|
heads = [1, 0, -1, 2, -1, -4, -5, -1]
|
||||||
doc = make_doc(EN, 'This is \t a \t\n \n sentence . \n\n \n')
|
transition = ['L-nsubj', 'S', 'L-det', 'R-attr', 'D', 'R-punct']
|
||||||
assert doc[2].is_space
|
tokens = en_tokenizer(text)
|
||||||
assert doc[4].is_space
|
doc = get_doc(tokens.vocab, text.split(' '), heads=heads)
|
||||||
assert doc[5].is_space
|
assert doc[2].is_space
|
||||||
assert doc[8].is_space
|
assert doc[4].is_space
|
||||||
assert doc[9].is_space
|
assert doc[5].is_space
|
||||||
with EN.parser.step_through(doc) as stepwise:
|
assert doc[8].is_space
|
||||||
stepwise.transition('L-nsubj')
|
assert doc[9].is_space
|
||||||
stepwise.transition('S')
|
|
||||||
stepwise.transition('L-det')
|
apply_transition_sequence(en_parser, doc, transition)
|
||||||
stepwise.transition('R-attr')
|
for token in doc:
|
||||||
stepwise.transition('D')
|
assert token.dep != 0 or token.is_space
|
||||||
stepwise.transition('R-punct')
|
assert [token.head.i for token in doc] == [1, 1, 1, 6, 3, 3, 1, 1, 7, 7]
|
||||||
assert stepwise.stack == set([])
|
|
||||||
for tok in doc:
|
|
||||||
assert tok.dep != 0 or tok.is_space
|
|
||||||
assert [ tok.head.i for tok in doc ] == [1,1,1,6,3,3,1,1,7,7]
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.models
|
@pytest.mark.parametrize('text,length', [(['\n'], 1),
|
||||||
def test_space_attachment_one_space_sentence(EN):
|
(['\n', '\t', '\n\n', '\t'], 4)])
|
||||||
# one space token sentence
|
def test_parser_space_attachment_space(en_tokenizer, en_parser, text, length):
|
||||||
doc = make_doc(EN, '\n')
|
doc = Doc(en_parser.vocab, words=text)
|
||||||
assert len(doc) == 1
|
assert len(doc) == length
|
||||||
with EN.parser.step_through(doc) as _:
|
with en_parser.step_through(doc) as _:
|
||||||
pass
|
pass
|
||||||
assert doc[0].is_space
|
assert doc[0].is_space
|
||||||
assert doc[0].head.i == 0
|
for token in doc:
|
||||||
|
assert token.head.i == length-1
|
||||||
|
|
||||||
@pytest.mark.models
|
|
||||||
def test_space_attachment_only_space_sentence(EN):
|
|
||||||
# space-exclusive sentence
|
|
||||||
doc = make_doc(EN, '\n \t \n\n \t')
|
|
||||||
assert len(doc) == 4
|
|
||||||
for tok in doc:
|
|
||||||
assert tok.is_space
|
|
||||||
with EN.parser.step_through(doc) as _:
|
|
||||||
pass
|
|
||||||
# all tokens are attached to the last one
|
|
||||||
for tok in doc:
|
|
||||||
assert tok.head.i == 3
|
|
||||||
|
|
Loading…
Reference in New Issue