Modernise space attachment parser tests and don't depend on models

This commit is contained in:
Ines Montani 2017-01-12 01:54:44 +01:00
parent 69778924c8
commit 19c4132097
1 changed files with 57 additions and 72 deletions

View File

@ -1,90 +1,75 @@
# coding: utf-8
from __future__ import unicode_literals
from ...tokens.doc import Doc
from ...attrs import HEAD
from ..util import get_doc, apply_transition_sequence
import pytest
import numpy
from spacy.attrs import HEAD
def make_doc(EN, sentstr):
sent = sentstr.split(' ')
doc = EN.tokenizer.tokens_from_list(sent)
EN.tagger(doc)
return doc
@pytest.mark.models
def test_space_attachment(EN):
sentence = 'This is a test.\nTo ensure spaces are attached well.'
doc = EN(sentence)
def test_parser_space_attachment(en_tokenizer):
text = "This is a test.\nTo ensure spaces are attached well."
heads = [1, 0, 1, -2, -3, -1, 1, 4, -1, 2, 1, 0, -1, -2]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
for sent in doc.sents:
if len(sent) == 1:
assert not sent[-1].is_space
@pytest.mark.models
def test_sentence_space(EN):
text = ('''I look forward to using Thingamajig. I've been told it will '''
'''make my life easier...''')
doc = EN(text)
def test_parser_sentence_space(en_tokenizer):
text = "I look forward to using Thingamajig. I've been told it will make my life easier..."
heads = [1, 0, -1, -2, -1, -1, -5, -1, 3, 2, 1, 0, 2, 1, -3, 1, 1, -3, -7]
deps = ['nsubj', 'ROOT', 'advmod', 'prep', 'pcomp', 'dobj', 'punct', '',
'nsubjpass', 'aux', 'auxpass', 'ROOT', 'nsubj', 'aux', 'ccomp',
'poss', 'nsubj', 'ccomp', 'punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
assert len(list(doc.sents)) == 2
@pytest.mark.models
def test_space_attachment_leading_space(EN):
# leading space token
doc = make_doc(EN, '\t \n This is a sentence .')
assert doc[0].is_space
assert doc[1].is_space
assert doc[2].orth_ == 'This'
with EN.parser.step_through(doc) as stepwise:
pass
assert doc[0].head.i == 2
assert doc[1].head.i == 2
assert stepwise.stack == set([2])
def test_parser_space_attachment_leading(en_tokenizer, en_parser):
text = "\t \n This is a sentence ."
heads = [1, 1, 0, 1, -2, -3]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, text.split(' '), heads=heads)
assert doc[0].is_space
assert doc[1].is_space
assert doc[2].text == 'This'
with en_parser.step_through(doc) as stepwise:
pass
assert doc[0].head.i == 2
assert doc[1].head.i == 2
assert stepwise.stack == set([2])
@pytest.mark.models
def test_space_attachment_intermediate_and_trailing_space(EN):
# intermediate and trailing space tokens
doc = make_doc(EN, 'This is \t a \t\n \n sentence . \n\n \n')
assert doc[2].is_space
assert doc[4].is_space
assert doc[5].is_space
assert doc[8].is_space
assert doc[9].is_space
with EN.parser.step_through(doc) as stepwise:
stepwise.transition('L-nsubj')
stepwise.transition('S')
stepwise.transition('L-det')
stepwise.transition('R-attr')
stepwise.transition('D')
stepwise.transition('R-punct')
assert stepwise.stack == set([])
for tok in doc:
assert tok.dep != 0 or tok.is_space
assert [ tok.head.i for tok in doc ] == [1,1,1,6,3,3,1,1,7,7]
def test_parser_space_attachment_intermediate_trailing(en_tokenizer, en_parser):
text = "This is \t a \t\n \n sentence . \n\n \n"
heads = [1, 0, -1, 2, -1, -4, -5, -1]
transition = ['L-nsubj', 'S', 'L-det', 'R-attr', 'D', 'R-punct']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, text.split(' '), heads=heads)
assert doc[2].is_space
assert doc[4].is_space
assert doc[5].is_space
assert doc[8].is_space
assert doc[9].is_space
apply_transition_sequence(en_parser, doc, transition)
for token in doc:
assert token.dep != 0 or token.is_space
assert [token.head.i for token in doc] == [1, 1, 1, 6, 3, 3, 1, 1, 7, 7]
@pytest.mark.models
def test_space_attachment_one_space_sentence(EN):
# one space token sentence
doc = make_doc(EN, '\n')
assert len(doc) == 1
with EN.parser.step_through(doc) as _:
pass
assert doc[0].is_space
assert doc[0].head.i == 0
@pytest.mark.models
def test_space_attachment_only_space_sentence(EN):
# space-exclusive sentence
doc = make_doc(EN, '\n \t \n\n \t')
assert len(doc) == 4
for tok in doc:
assert tok.is_space
with EN.parser.step_through(doc) as _:
pass
# all tokens are attached to the last one
for tok in doc:
assert tok.head.i == 3
@pytest.mark.parametrize('text,length', [(['\n'], 1),
(['\n', '\t', '\n\n', '\t'], 4)])
def test_parser_space_attachment_space(en_tokenizer, en_parser, text, length):
doc = Doc(en_parser.vocab, words=text)
assert len(doc) == length
with en_parser.step_through(doc) as _:
pass
assert doc[0].is_space
for token in doc:
assert token.head.i == length-1