diff --git a/spacy/pipeline.pyx b/spacy/pipeline.pyx index e55710dee..a159fad50 100644 --- a/spacy/pipeline.pyx +++ b/spacy/pipeline.pyx @@ -11,7 +11,7 @@ import ujson import msgpack from thinc.api import chain -from thinc.v2v import Affine, Softmax +from thinc.v2v import Affine, SELU, Softmax from thinc.t2v import Pooling, max_pool, mean_pool from thinc.neural.util import to_categorical, copy_array from thinc.neural._classes.difference import Siamese, CauchySimilarity @@ -29,7 +29,7 @@ from .compat import json_dumps from .attrs import POS from .parts_of_speech import X from ._ml import Tok2Vec, build_text_classifier, build_tagger_model -from ._ml import link_vectors_to_models +from ._ml import link_vectors_to_models, zero_init, flatten from . import util @@ -216,7 +216,7 @@ class Tensorizer(Pipe): name = 'tensorizer' @classmethod - def Model(cls, width=128, embed_size=4000, **cfg): + def Model(cls, output_size=300, input_size=384, **cfg): """Create a new statistical model for the class. width (int): Output size of the model. @@ -224,9 +224,11 @@ class Tensorizer(Pipe): **cfg: Config parameters. RETURNS (Model): A `thinc.neural.Model` or similar instance. """ - width = util.env_opt('token_vector_width', width) - embed_size = util.env_opt('embed_size', embed_size) - return Tok2Vec(width, embed_size, **cfg) + model = chain( + SELU(output_size, input_size), + SELU(output_size, output_size), + zero_init(Affine(output_size, output_size))) + return model def __init__(self, vocab, model=True, **cfg): """Construct a new statistical model. Weights are not allocated on @@ -244,6 +246,7 @@ class Tensorizer(Pipe): """ self.vocab = vocab self.model = model + self.input_models = [] self.cfg = dict(cfg) self.cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1] self.cfg.setdefault('cnn_maxout_pieces', 3) @@ -269,8 +272,8 @@ class Tensorizer(Pipe): """ for docs in cytoolz.partition_all(batch_size, stream): docs = list(docs) - tokvecses = self.predict(docs) - self.set_annotations(docs, tokvecses) + tensors = self.predict(docs) + self.set_annotations(docs, tensors) yield from docs def predict(self, docs): @@ -279,18 +282,19 @@ class Tensorizer(Pipe): docs (iterable): A sequence of `Doc` objects. RETURNS (object): Vector representations for each token in the docs. """ - tokvecs = self.model(docs) - return tokvecs + inputs = self.model.ops.flatten([doc.tensor for doc in docs]) + outputs = self.model(inputs) + return self.model.ops.unflatten(outputs, [len(d) for d in docs]) - def set_annotations(self, docs, tokvecses): + def set_annotations(self, docs, tensors): """Set the tensor attribute for a batch of documents. docs (iterable): A sequence of `Doc` objects. - tokvecs (object): Vector representation for each token in the docs. + tensors (object): Vector representation for each token in the docs. """ - for doc, tokvecs in zip(docs, tokvecses): - assert tokvecs.shape[0] == len(doc) - doc.tensor = tokvecs + for doc, tensor in zip(docs, tensors): + assert tensor.shape[0] == len(doc) + doc.tensor = tensor def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None): """Update the model. @@ -303,11 +307,34 @@ class Tensorizer(Pipe): """ if isinstance(docs, Doc): docs = [docs] - tokvecs, bp_tokvecs = self.model.begin_update(docs, drop=drop) - return tokvecs, bp_tokvecs + inputs = [] + bp_inputs = [] + for tok2vec in self.input_models: + tensor, bp_tensor = tok2vec.begin_update(docs, drop=drop) + inputs.append(tensor) + bp_inputs.append(bp_tensor) + inputs = self.model.ops.xp.hstack(inputs) + scores, bp_scores = self.model.begin_update(inputs, drop=drop) + loss, d_scores = self.get_loss(docs, golds, scores) + d_inputs = bp_scores(d_scores, sgd=sgd) + d_inputs = self.model.ops.xp.split(d_inputs, len(self.input_models), axis=1) + for d_input, bp_input in zip(d_inputs, bp_inputs): + bp_input(d_input, sgd=sgd) + if losses is not None: + losses.setdefault(self.name, 0.) + losses[self.name] += loss + return loss - def get_loss(self, docs, golds, scores): - raise NotImplementedError + def get_loss(self, docs, golds, prediction): + target = [] + i = 0 + for doc in docs: + vectors = self.model.ops.xp.vstack([w.vector for w in doc]) + target.append(vectors) + target = self.model.ops.xp.vstack(target) + d_scores = (prediction - target) / prediction.shape[0] + loss = (d_scores**2).sum() + return loss, d_scores def begin_training(self, gold_tuples=tuple(), pipeline=None): """Allocate models, pre-process training data and acquire a trainer and @@ -316,8 +343,13 @@ class Tensorizer(Pipe): gold_tuples (iterable): Gold-standard training data. pipeline (list): The pipeline the model is part of. """ + for name, model in pipeline: + if getattr(model, 'tok2vec', None): + self.input_models.append(model.tok2vec) if self.model is True: - self.cfg['pretrained_dims'] = self.vocab.vectors_length + self.cfg['input_size'] = 384 + self.cfg['output_size'] = 300 + #self.cfg['pretrained_dims'] = self.vocab.vectors_length self.model = self.Model(**self.cfg) link_vectors_to_models(self.vocab) @@ -337,6 +369,13 @@ class Tagger(Pipe): def labels(self): return self.vocab.morphology.tag_names + @property + def tok2vec(self): + if self.model in (None, True, False): + return None + else: + return chain(self.model.tok2vec, flatten) + def __call__(self, doc): tags, tokvecs = self.predict([doc]) self.set_annotations([doc], tags, tensors=tokvecs)