mirror of https://github.com/explosion/spaCy.git
* Add quickstart page to docs
This commit is contained in:
parent
43b5a0f4c7
commit
1590788dd4
|
@ -0,0 +1,109 @@
|
||||||
|
Quick Start
|
||||||
|
===========
|
||||||
|
|
||||||
|
|
||||||
|
Install
|
||||||
|
-------
|
||||||
|
|
||||||
|
$ pip install spacy
|
||||||
|
$ python -m spacy.en.download
|
||||||
|
|
||||||
|
The download command fetches the parser model, which is too big to host on PyPi
|
||||||
|
(about 100mb). The data is installed within the spacy.en package.
|
||||||
|
|
||||||
|
Usage
|
||||||
|
-----
|
||||||
|
|
||||||
|
The main entry-point is spacy.en.English.__call__, which you use to turn
|
||||||
|
a unicode string into a Tokens object:
|
||||||
|
|
||||||
|
>>> from spacy.en import English
|
||||||
|
>>> nlp = English()
|
||||||
|
>>> tokens = nlp(u'A fine, very fine, example sentence')
|
||||||
|
|
||||||
|
You shouldn't need to batch up your text or prepare it in any way.
|
||||||
|
Processing times are linear in the length of the string, with minimal per-call
|
||||||
|
overhead (apart from the first call, when the tagger and parser are lazy-loaded).
|
||||||
|
|
||||||
|
Usually, you will only want to create one instance of the pipeline, and pass it
|
||||||
|
around. Each instance maintains its own string-to-id mapping table, so if you
|
||||||
|
process a new word, it is likely to be assigned different integer IDs by the
|
||||||
|
two different instances.
|
||||||
|
|
||||||
|
The Tokens object has a sequences interface, which you can use to get
|
||||||
|
individual tokens:
|
||||||
|
|
||||||
|
>>> print tokens[0].lemma
|
||||||
|
'a'
|
||||||
|
>>> for token in tokens:
|
||||||
|
... print token.sic, token.pos
|
||||||
|
|
||||||
|
For feature extraction, you can select a number of features to export to
|
||||||
|
a numpy.ndarray:
|
||||||
|
|
||||||
|
>>> from spacy.en import enums
|
||||||
|
>>> tokens.to_array([enums.LEMMA, enums.SIC])
|
||||||
|
|
||||||
|
Another common operation is to export the embeddings vector to a numpy array:
|
||||||
|
|
||||||
|
>>> tokens.to_vec()
|
||||||
|
|
||||||
|
Create a bag-of-words representation:
|
||||||
|
|
||||||
|
>>> tokens.count_by(enums.LEMMA)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
(Most of the) API at a glance
|
||||||
|
-----------------------------
|
||||||
|
|
||||||
|
.. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data'))
|
||||||
|
|
||||||
|
.. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens
|
||||||
|
|
||||||
|
.. py:class:: spacy.tokens.Tokens via English.__call__
|
||||||
|
|
||||||
|
.. py:method:: __getitem__(self, i) --> Token
|
||||||
|
|
||||||
|
.. py:method:: __iter__(self) --> Iterator[Token]
|
||||||
|
|
||||||
|
.. py:method:: to_array(self, attr_ids: List[int]) --> numpy.ndarray[ndim=2, dtype=int32]
|
||||||
|
|
||||||
|
.. py:method:: count_by(self, attr_id: int) --> Dict[int, int]
|
||||||
|
|
||||||
|
.. py:class:: spacy.tokens.Token via Tokens.__iter__, Tokens.__getitem__
|
||||||
|
|
||||||
|
.. py:method:: __unicode__(self) --> unicode
|
||||||
|
|
||||||
|
.. py:method:: __len__(self) --> int
|
||||||
|
|
||||||
|
.. py:method:: nbor(self, i=1) --> Token
|
||||||
|
|
||||||
|
.. py:method:: child(self, i=1) --> Token
|
||||||
|
|
||||||
|
.. py:method:: sibling(self, i=1) --> Token
|
||||||
|
|
||||||
|
.. py:method:: check_flag(self, attr_id: int) --> bool
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
.. py:attribute:: cluster: int
|
||||||
|
|
||||||
|
.. py:attribute:: string: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: string: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: lemma: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: dep_tag: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: pos: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: fine_pos: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: sic: unicode
|
||||||
|
|
||||||
|
.. py:attribute:: head: Token
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue