mirror of https://github.com/explosion/spaCy.git
add Example API with examples of Example usage
This commit is contained in:
parent
bb3ee38cf9
commit
14a796e3f9
|
@ -1,10 +1,280 @@
|
|||
---
|
||||
title: Example
|
||||
teaser: A training example
|
||||
teaser: A training instance
|
||||
tag: class
|
||||
source: spacy/gold/example.pyx
|
||||
new: 3.0
|
||||
---
|
||||
|
||||
<!-- TODO: -->
|
||||
An `Example` holds the information for one training instance. It stores two
|
||||
`Doc` objects: one for holding the gold-standard reference data, and one for
|
||||
holding the predictions of the pipeline. An `Alignment` <!-- TODO: link? -->
|
||||
object stores the alignment between these two documents, as they can differ in
|
||||
tokenization.
|
||||
|
||||
## Example.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
Construct an `Example` object from the `predicted` document and the `reference`
|
||||
document. If `alignment` is `None`, it will be initialized from the words in
|
||||
both documents.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.tokens import Doc
|
||||
> from spacy.gold import Example
|
||||
> words = ["hello", "world", "!"]
|
||||
> spaces = [True, False, False]
|
||||
> predicted = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
> reference = parse_gold_doc(my_data)
|
||||
> example = Example(predicted, reference)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | ----------- | ------------------------------------------------------------------------------------------------ |
|
||||
| `predicted` | `Doc` | The document containing (partial) predictions. Can not be `None`. |
|
||||
| `reference` | `Doc` | The document containing gold-standard annotations. Can not be `None`. |
|
||||
| _keyword-only_ | | |
|
||||
| `alignment` | `Alignment` | An object holding the alignment between the tokens of the `predicted` and `reference` documents. |
|
||||
| **RETURNS** | `Example` | The newly constructed object. |
|
||||
|
||||
## Example.from_dict {#from_dict tag="classmethod"}
|
||||
|
||||
Construct an `Example` object from the `predicted` document and the reference
|
||||
annotations provided as a dictionary.
|
||||
|
||||
<!-- TODO: document formats? legacy & token_annotation stuff -->
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.tokens import Doc
|
||||
> from spacy.gold import Example
|
||||
> predicted = Doc(vocab, words=["Apply", "some", "sunscreen"])
|
||||
> token_ref = ["Apply", "some", "sun", "screen"]
|
||||
> tags_ref = ["VERB", "DET", "NOUN", "NOUN"]
|
||||
> example = Example.from_dict(predicted, {"words": token_ref, "tags": tags_ref})
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| -------------- | ---------------- | ----------------------------------------------------------------- |
|
||||
| `predicted` | `Doc` | The document containing (partial) predictions. Can not be `None`. |
|
||||
| `example_dict` | `Dict[str, obj]` | The gold-standard annotations as a dictionary. Can not be `None`. |
|
||||
| **RETURNS** | `Example` | The newly constructed object. |
|
||||
|
||||
## Example.text {#text tag="property"}
|
||||
|
||||
The text of the `predicted` document in this `Example`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> raw_text = example.text
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---- | ------------------------------------- |
|
||||
| **RETURNS** | str | The text of the `predicted` document. |
|
||||
|
||||
## Example.predicted {#predicted tag="property"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> docs = [eg.predicted for eg in examples]
|
||||
> predictions, _ = model.begin_update(docs)
|
||||
> set_annotations(docs, predictions)
|
||||
> ```
|
||||
|
||||
The `Doc` holding the predictions. Occassionally also refered to as `example.x`.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | ---------------------------------------------- |
|
||||
| **RETURNS** | `Doc` | The document containing (partial) predictions. |
|
||||
|
||||
## Example.reference {#reference tag="property"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> for i, eg in enumerate(examples):
|
||||
> for j, label in enumerate(all_labels):
|
||||
> gold_labels[i][j] = eg.reference.cats.get(label, 0.0)
|
||||
> ```
|
||||
|
||||
The `Doc` holding the gold-standard annotations. Occassionally also refered to
|
||||
as `example.y`.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----- | -------------------------------------------------- |
|
||||
| **RETURNS** | `Doc` | The document containing gold-standard annotations. |
|
||||
|
||||
## Example.alignment {#alignment tag="property"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> tokens_x = ["Apply", "some", "sunscreen"]
|
||||
> x = Doc(vocab, words=tokens_x)
|
||||
> tokens_y = ["Apply", "some", "sun", "screen"]
|
||||
> example = Example.from_dict(x, {"words": tokens_y})
|
||||
> alignment = example.alignment
|
||||
> assert list(alignment.y2x.data) == [[0], [1], [2], [2]]
|
||||
> ```
|
||||
|
||||
The `Alignment` object mapping the tokens of the `predicted` document to those
|
||||
of the `reference` document.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----------- | -------------------------------------------------- |
|
||||
| **RETURNS** | `Alignment` | The document containing gold-standard annotations. |
|
||||
|
||||
## Example.get_aligned {#get_aligned tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> predicted = Doc(vocab, words=["Apply", "some", "sunscreen"])
|
||||
> token_ref = ["Apply", "some", "sun", "screen"]
|
||||
> tags_ref = ["VERB", "DET", "NOUN", "NOUN"]
|
||||
> example = Example.from_dict(predicted, {"words": token_ref, "tags": tags_ref})
|
||||
> assert example.get_aligned("TAG", as_string=True) == ["VERB", "DET", "NOUN"]
|
||||
> ```
|
||||
|
||||
Get the aligned view of a certain token attribute, denoted by its int ID or string name.
|
||||
|
||||
| Name | Type | Description | Default |
|
||||
| ----------- | -------------------------- | ------------------------------------------------------------------ | ------- |
|
||||
| `field` | int or str | Attribute ID or string name | |
|
||||
| `as_string` | bool | Whether or not to return the list of values as strings. | `False` |
|
||||
| **RETURNS** | `List[int]` or `List[str]` | List of integer values, or string values if `as_string` is `True`. | |
|
||||
|
||||
## Example.get_aligned_parse {#get_aligned_parse tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("He pretty quickly walks away")
|
||||
> example = Example.from_dict(doc, {"heads": [3, 2, 3, 0, 2]})
|
||||
> proj_heads, proj_labels = example.get_aligned_parse(projectivize=True)
|
||||
> assert proj_heads == [3, 2, 3, 0, 3]
|
||||
> ```
|
||||
|
||||
Get the aligned view of the dependency parse. If `projectivize` is set to
|
||||
`True`, non-projective dependency trees are made projective through the
|
||||
Pseudo-Projective Dependency Parsing algorithm by Nivre and Nilsson (2005).
|
||||
|
||||
| Name | Type | Description | Default |
|
||||
| -------------- | -------------------------- | ------------------------------------------------------------------ | ------- |
|
||||
| `projectivize` | bool | Whether or not to projectivize the dependency trees | `True` |
|
||||
| **RETURNS** | `List[int]` or `List[str]` | List of integer values, or string values if `as_string` is `True`. | |
|
||||
|
||||
## Example.get_aligned_ner {#get_aligned_ner tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> words = ["Mrs", "Smith", "flew", "to", "New York"]
|
||||
> doc = Doc(en_vocab, words=words)
|
||||
> entities = [(0, len("Mrs Smith"), "PERSON"), (18, 18 + len("New York"), "LOC")]
|
||||
> gold_words = ["Mrs Smith", "flew", "to", "New", "York"]
|
||||
> example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
|
||||
> ner_tags = example.get_aligned_ner()
|
||||
> assert ner_tags == ["B-PERSON", "L-PERSON", "O", "O", "U-LOC"]
|
||||
> ```
|
||||
|
||||
Get the aligned view of the NER
|
||||
[BILUO](/usage/linguistic-features#accessing-ner) tags.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ----------- | ----------------------------------------------------------------------------------- |
|
||||
| **RETURNS** | `List[str]` | List of BILUO values, denoting whether tokens are part of an NER annotation or not. |
|
||||
|
||||
## Example.get_aligned_spans_y2x {#get_aligned_spans_y2x tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> words = ["Mr and Mrs Smith", "flew", "to", "New York"]
|
||||
> doc = Doc(en_vocab, words=words)
|
||||
> entities = [(0, len("Mr and Mrs Smith"), "PERSON")]
|
||||
> tokens_ref = ["Mr", "and", "Mrs", "Smith", "flew", "to", "New", "York"]
|
||||
> example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
|
||||
> ents_ref = example.reference.ents
|
||||
> assert [(ent.start, ent.end) for ent in ents_ref] == [(0, 4)]
|
||||
> ents_y2x = example.get_aligned_spans_y2x(ents_ref)
|
||||
> assert [(ent.start, ent.end) for ent in ents_y2x] == [(0, 1)]
|
||||
> ```
|
||||
|
||||
Get the aligned view of any set of [`Span`](/api/span) objects defined over
|
||||
`example.reference`. The resulting span indices will align to the tokenization
|
||||
in `example.predicted`.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---------------- | --------------------------------------------------------------- |
|
||||
| `y_spans` | `Iterable[Span]` | `Span` objects aligned to the tokenization of `self.reference`. |
|
||||
| **RETURNS** | `Iterable[Span]` | `Span` objects aligned to the tokenization of `self.predicted`. |
|
||||
|
||||
## Example.get_aligned_spans_x2y {#get_aligned_spans_x2y tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> ruler = EntityRuler(nlp)
|
||||
> patterns = [{"label": "PERSON", "pattern": "Mr and Mrs Smith"}]
|
||||
> ruler.add_patterns(patterns)
|
||||
> nlp.add_pipe(ruler)
|
||||
> doc = nlp("Mr and Mrs Smith flew to New York")
|
||||
> entities = [(0, len("Mr and Mrs Smith"), "PERSON")]
|
||||
> tokens_ref = ["Mr and Mrs", "Smith", "flew", "to", "New York"]
|
||||
> example = Example.from_dict(doc, {"words": tokens_ref, "entities": entities})
|
||||
> ents_pred = example.predicted.ents
|
||||
> assert [(ent.start, ent.end) for ent in ents_pred] == [(0, 4)]
|
||||
> ents_x2y = example.get_aligned_spans_x2y(ents_pred)
|
||||
> assert [(ent.start, ent.end) for ent in ents_x2y] == [(0, 2)]
|
||||
> ```
|
||||
|
||||
Get the aligned view of any set of [`Span`](/api/span) objects defined over
|
||||
`example.predicted`. The resulting span indices will align to the tokenization
|
||||
in `example.reference`. This method is particularly useful to assess the
|
||||
accuracy of predicted entities against the original gold-standard annotation.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---------------- | --------------------------------------------------------------- |
|
||||
| `x_spans` | `Iterable[Span]` | `Span` objects aligned to the tokenization of `self.predicted`. |
|
||||
| **RETURNS** | `Iterable[Span]` | `Span` objects aligned to the tokenization of `self.reference`. |
|
||||
|
||||
## Example.to_dict {#to_dict tag="method"}
|
||||
|
||||
Return a dictionary representation of the reference annotation contained in this
|
||||
`Example`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> eg_dict = example.to_dict()
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ---------------- | ------------------------------------------------------ |
|
||||
| **RETURNS** | `Dict[str, obj]` | Dictionary representation of the reference annotation. |
|
||||
|
||||
## Example.split_sents {#split_sents tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("I went yesterday had lots of fun")
|
||||
> tokens_ref = ["I", "went", "yesterday", "had", "lots", "of", "fun"]
|
||||
> sents_ref = [True, False, False, True, False, False, False]
|
||||
> example = Example.from_dict(doc, {"words": tokens_ref, "sent_starts": sents_ref})
|
||||
> split_examples = example.split_sents()
|
||||
> assert split_examples[0].text == "I went yesterday "
|
||||
> assert split_examples[1].text == "had lots of fun"
|
||||
> ```
|
||||
|
||||
Split one `Example` into multiple `Example` objects, one for each sentence.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | --------------- | ---------------------------------------------------------- |
|
||||
| **RETURNS** | `List[Example]` | List of `Example` objects, one for each original sentence. |
|
||||
|
|
Loading…
Reference in New Issue