mirror of https://github.com/explosion/spaCy.git
Disable gold preprocessing
This commit is contained in:
parent
467bbeadb8
commit
135a13790c
|
@ -68,14 +68,16 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||||
print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
||||||
for i in range(n_iter):
|
for i in range(n_iter):
|
||||||
with tqdm.tqdm(total=n_train_docs) as pbar:
|
with tqdm.tqdm(total=n_train_docs) as pbar:
|
||||||
train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True)
|
train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True,
|
||||||
|
gold_preproc=False)
|
||||||
|
losses = {}
|
||||||
idx = 0
|
idx = 0
|
||||||
while idx < n_train_docs:
|
while idx < n_train_docs:
|
||||||
batch = list(cytoolz.take(int(batch_size), train_docs))
|
batch = list(cytoolz.take(int(batch_size), train_docs))
|
||||||
if not batch:
|
if not batch:
|
||||||
break
|
break
|
||||||
docs, golds = zip(*batch)
|
docs, golds = zip(*batch)
|
||||||
nlp.update(docs, golds, drop=dropout, sgd=optimizer)
|
nlp.update(docs, golds, drop=dropout, sgd=optimizer, losses=losses)
|
||||||
pbar.update(len(docs))
|
pbar.update(len(docs))
|
||||||
idx += len(docs)
|
idx += len(docs)
|
||||||
batch_size *= batch_accel
|
batch_size *= batch_accel
|
||||||
|
@ -83,12 +85,12 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||||
dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
|
dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
|
||||||
with nlp.use_params(optimizer.averages):
|
with nlp.use_params(optimizer.averages):
|
||||||
start = timer()
|
start = timer()
|
||||||
scorer = nlp.evaluate(corpus.dev_docs(nlp))
|
scorer = nlp.evaluate(corpus.dev_docs(nlp, gold_preproc=False))
|
||||||
end = timer()
|
end = timer()
|
||||||
n_words = scorer.tokens.tp + scorer.tokens.fn
|
n_words = scorer.tokens.tp + scorer.tokens.fn
|
||||||
assert n_words != 0
|
assert n_words != 0
|
||||||
wps = n_words / (end-start)
|
wps = n_words / (end-start)
|
||||||
print_progress(i, {}, scorer.scores, wps=wps)
|
print_progress(i, losses, scorer.scores, wps=wps)
|
||||||
with (output_path / 'model.bin').open('wb') as file_:
|
with (output_path / 'model.bin').open('wb') as file_:
|
||||||
with nlp.use_params(optimizer.averages):
|
with nlp.use_params(optimizer.averages):
|
||||||
dill.dump(nlp, file_, -1)
|
dill.dump(nlp, file_, -1)
|
||||||
|
@ -109,9 +111,10 @@ def print_progress(itn, losses, dev_scores, wps=0.0):
|
||||||
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
|
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
|
||||||
'ents_p', 'ents_r', 'ents_f', 'wps']:
|
'ents_p', 'ents_r', 'ents_f', 'wps']:
|
||||||
scores[col] = 0.0
|
scores[col] = 0.0
|
||||||
scores.update(losses)
|
scores['dep_loss'] = losses.get('parser', 0.0)
|
||||||
|
scores['tag_loss'] = losses.get('tagger', 0.0)
|
||||||
scores.update(dev_scores)
|
scores.update(dev_scores)
|
||||||
scores[wps] = wps
|
scores['wps'] = wps
|
||||||
tpl = '\t'.join((
|
tpl = '\t'.join((
|
||||||
'{:d}',
|
'{:d}',
|
||||||
'{dep_loss:.3f}',
|
'{dep_loss:.3f}',
|
||||||
|
|
Loading…
Reference in New Issue