mirror of https://github.com/explosion/spaCy.git
Refactor Tok2Vec model
This commit is contained in:
parent
c6b4f63c7c
commit
123f8b832d
|
@ -1,8 +1,8 @@
|
|||
from typing import Optional, List
|
||||
from thinc.api import chain, clone, concatenate, with_array, uniqued
|
||||
from thinc.api import Model, noop, with_padded, Maxout, expand_window
|
||||
from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
|
||||
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
|
||||
from thinc.api import chain, clone, concatenate, with_array, with_padded
|
||||
from thinc.api import Model, noop
|
||||
from thinc.api import FeatureExtractor, HashEmbed, StaticVectors
|
||||
from thincapi import expand_window, residual, Maxout, Mish
|
||||
from thinc.types import Floats2d
|
||||
|
||||
from ... import util
|
||||
|
@ -12,198 +12,71 @@ from ...pipeline.tok2vec import Tok2VecListener
|
|||
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.Tok2VecTensors.v1")
|
||||
def tok2vec_tensors_v1(width, upstream="*"):
|
||||
@registry.architectures.register("spacy.Tok2VecListener.v1")
|
||||
def tok2vec_listener_v1(width, upstream="*"):
|
||||
tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
|
||||
return tok2vec
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.VocabVectors.v1")
|
||||
def get_vocab_vectors(name):
|
||||
nlp = util.load_model(name)
|
||||
return nlp.vocab.vectors
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.Tok2Vec.v1")
|
||||
def Tok2Vec(extract, embed, encode):
|
||||
field_size = 0
|
||||
if encode.attrs.get("receptive_field", None):
|
||||
field_size = encode.attrs["receptive_field"]
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
tok2vec = extract >> with_array(embed >> encode, pad=field_size)
|
||||
def Tok2Vec(
|
||||
embed: Model[List[Doc], List[Floats2d]],
|
||||
encode: Model[List[Floats2d], List[Floats2d]
|
||||
) -> Model[List[Doc], List[Floats2d]]:
|
||||
tok2vec = with_array(
|
||||
chain(embed, encode),
|
||||
pad=encode.attrs.get("receptive_field", 0)
|
||||
)
|
||||
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
||||
tok2vec.set_ref("embed", embed)
|
||||
tok2vec.set_ref("encode", encode)
|
||||
return tok2vec
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.Doc2Feats.v1")
|
||||
def Doc2Feats(columns):
|
||||
return FeatureExtractor(columns)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.HashEmbedCNN.v1")
|
||||
def hash_embed_cnn(
|
||||
pretrained_vectors: str,
|
||||
@registry.architectures.register("spacy.HashEmbed.v1")
|
||||
def HashEmbed(
|
||||
width: int,
|
||||
depth: int,
|
||||
embed_size: int,
|
||||
maxout_pieces: int,
|
||||
window_size: int,
|
||||
subword_features: bool,
|
||||
dropout: float,
|
||||
) -> Model[List[Doc], List[Floats2d]:
|
||||
# Does not use character embeddings: set to False by default
|
||||
return build_Tok2Vec_model(
|
||||
width=width,
|
||||
embed_size=embed_size,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
conv_depth=depth,
|
||||
bilstm_depth=0,
|
||||
maxout_pieces=maxout_pieces,
|
||||
window_size=window_size,
|
||||
subword_features=subword_features,
|
||||
char_embed=False,
|
||||
nM=0,
|
||||
nC=0,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.HashCharEmbedCNN.v1")
|
||||
def hash_charembed_cnn(
|
||||
pretrained_vectors,
|
||||
width,
|
||||
depth,
|
||||
embed_size,
|
||||
maxout_pieces,
|
||||
window_size,
|
||||
nM,
|
||||
nC,
|
||||
dropout,
|
||||
rows: int,
|
||||
also_embed_subwords: bool,
|
||||
also_use_static_vectors: bool
|
||||
):
|
||||
# Allows using character embeddings by setting nC, nM and char_embed=True
|
||||
return build_Tok2Vec_model(
|
||||
width=width,
|
||||
embed_size=embed_size,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
conv_depth=depth,
|
||||
bilstm_depth=0,
|
||||
maxout_pieces=maxout_pieces,
|
||||
window_size=window_size,
|
||||
subword_features=False,
|
||||
char_embed=True,
|
||||
nM=nM,
|
||||
nC=nC,
|
||||
dropout=dropout,
|
||||
)
|
||||
cols = [NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
|
||||
def hash_embed_bilstm_v1(
|
||||
pretrained_vectors,
|
||||
width,
|
||||
depth,
|
||||
embed_size,
|
||||
subword_features,
|
||||
maxout_pieces,
|
||||
dropout,
|
||||
):
|
||||
# Does not use character embeddings: set to False by default
|
||||
return build_Tok2Vec_model(
|
||||
width=width,
|
||||
embed_size=embed_size,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=depth,
|
||||
conv_depth=0,
|
||||
maxout_pieces=maxout_pieces,
|
||||
window_size=1,
|
||||
subword_features=subword_features,
|
||||
char_embed=False,
|
||||
nM=0,
|
||||
nC=0,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
|
||||
def hash_char_embed_bilstm_v1(
|
||||
pretrained_vectors, width, depth, embed_size, maxout_pieces, nM, nC, dropout
|
||||
):
|
||||
# Allows using character embeddings by setting nC, nM and char_embed=True
|
||||
return build_Tok2Vec_model(
|
||||
width=width,
|
||||
embed_size=embed_size,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=depth,
|
||||
conv_depth=0,
|
||||
maxout_pieces=maxout_pieces,
|
||||
window_size=1,
|
||||
subword_features=False,
|
||||
char_embed=True,
|
||||
nM=nM,
|
||||
nC=nC,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
|
||||
def LayerNormalizedMaxout(width, maxout_pieces):
|
||||
return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||
def MultiHashEmbed(
|
||||
columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
|
||||
):
|
||||
norm = HashEmbed(
|
||||
nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=6
|
||||
)
|
||||
if use_subwords:
|
||||
prefix = HashEmbed(
|
||||
nO=width,
|
||||
nV=rows // 2,
|
||||
column=columns.index("PREFIX"),
|
||||
dropout=dropout,
|
||||
seed=7,
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
nO=width,
|
||||
nV=rows // 2,
|
||||
column=columns.index("SUFFIX"),
|
||||
dropout=dropout,
|
||||
seed=8,
|
||||
)
|
||||
shape = HashEmbed(
|
||||
nO=width,
|
||||
nV=rows // 2,
|
||||
column=columns.index("SHAPE"),
|
||||
dropout=dropout,
|
||||
seed=9,
|
||||
seed = 7
|
||||
def make_hash_embed(feature):
|
||||
nonlocal seed
|
||||
seed += 1
|
||||
return HashEmbed(
|
||||
width,
|
||||
rows if feature == NORM else rows // 2,
|
||||
column=cols.index(feature),
|
||||
seed=seed
|
||||
)
|
||||
|
||||
if pretrained_vectors:
|
||||
glove = StaticVectors(
|
||||
vectors_name=pretrained_vectors,
|
||||
nO=width,
|
||||
column=columns.index(ID),
|
||||
dropout=dropout,
|
||||
if also_embed_subwords:
|
||||
embeddings = [
|
||||
make_hash_embed(NORM)
|
||||
make_hash_embed(PREFIX)
|
||||
make_hash_embed(SUFFIX)
|
||||
make_hash_embed(SHAPE)
|
||||
]
|
||||
else:
|
||||
embeddings = [make_hash_embed(NORM)]
|
||||
|
||||
if also_use_static_vectors:
|
||||
model = chain(
|
||||
concatenate(
|
||||
chain(FeatureExtractor(cols), concatenate(*embeddings)),
|
||||
StaticVectors(width, dropout=dropout)
|
||||
),
|
||||
Maxout(width, dropout=dropout, normalize=True)
|
||||
)
|
||||
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
if not use_subwords and not pretrained_vectors:
|
||||
embed_layer = norm
|
||||
else:
|
||||
if use_subwords and pretrained_vectors:
|
||||
concat_columns = glove | norm | prefix | suffix | shape
|
||||
elif use_subwords:
|
||||
concat_columns = norm | prefix | suffix | shape
|
||||
else:
|
||||
concat_columns = glove | norm
|
||||
|
||||
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH"))
|
||||
|
||||
return embed_layer
|
||||
else:
|
||||
model = chain(
|
||||
chain(FeatureExtractor(cols), concatenate(*embeddings)),
|
||||
Maxout(width, concat_size, dropout=dropout, normalize=True)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
||||
|
@ -219,7 +92,7 @@ def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
|
|||
|
||||
|
||||
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
||||
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth):
|
||||
def MaxoutWindowEncoder(width: int, window_size: int, maxout_pieces: int, depth: int):
|
||||
cnn = chain(
|
||||
expand_window(window_size=window_size),
|
||||
Maxout(
|
||||
|
@ -249,133 +122,9 @@ def MishWindowEncoder(width, window_size, depth):
|
|||
|
||||
|
||||
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
||||
def TorchBiLSTMEncoder(width, depth):
|
||||
import torch.nn
|
||||
|
||||
# TODO FIX
|
||||
from thinc.api import PyTorchRNNWrapper
|
||||
|
||||
def BiLSTMEncoder(width, depth, dropout):
|
||||
if depth == 0:
|
||||
return noop()
|
||||
return with_padded(
|
||||
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
||||
PyTorchLSTM(width, width, bi=True, depth=depth, dropout=dropout)
|
||||
)
|
||||
|
||||
|
||||
def build_Tok2Vec_model(
|
||||
width: int,
|
||||
embed_size: int,
|
||||
pretrained_vectors: Optional[str],
|
||||
window_size: int,
|
||||
maxout_pieces: int,
|
||||
subword_features: bool,
|
||||
char_embed: bool,
|
||||
nM: int,
|
||||
nC: int,
|
||||
conv_depth: int,
|
||||
bilstm_depth: int,
|
||||
dropout: float,
|
||||
) -> Model:
|
||||
if char_embed:
|
||||
subword_features = False
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||
norm = HashEmbed(
|
||||
nO=width, nV=embed_size, column=cols.index(NORM), dropout=None, seed=0
|
||||
)
|
||||
if subword_features:
|
||||
prefix = HashEmbed(
|
||||
nO=width,
|
||||
nV=embed_size // 2,
|
||||
column=cols.index(PREFIX),
|
||||
dropout=None,
|
||||
seed=1,
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
nO=width,
|
||||
nV=embed_size // 2,
|
||||
column=cols.index(SUFFIX),
|
||||
dropout=None,
|
||||
seed=2,
|
||||
)
|
||||
shape = HashEmbed(
|
||||
nO=width,
|
||||
nV=embed_size // 2,
|
||||
column=cols.index(SHAPE),
|
||||
dropout=None,
|
||||
seed=3,
|
||||
)
|
||||
else:
|
||||
prefix, suffix, shape = (None, None, None)
|
||||
if pretrained_vectors is not None:
|
||||
glove = StaticVectors(
|
||||
vectors=pretrained_vectors.data,
|
||||
nO=width,
|
||||
column=cols.index(ID),
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
if subword_features:
|
||||
columns = 5
|
||||
embed = uniqued(
|
||||
(glove | norm | prefix | suffix | shape)
|
||||
>> Maxout(
|
||||
nO=width, nI=width * columns, nP=3, dropout=0.0, normalize=True,
|
||||
),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
else:
|
||||
columns = 2
|
||||
embed = uniqued(
|
||||
(glove | norm)
|
||||
>> Maxout(
|
||||
nO=width, nI=width * columns, nP=3, dropout=0.0, normalize=True,
|
||||
),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif subword_features:
|
||||
columns = 4
|
||||
embed = uniqued(
|
||||
concatenate(norm, prefix, suffix, shape)
|
||||
>> Maxout(
|
||||
nO=width, nI=width * columns, nP=3, dropout=0.0, normalize=True,
|
||||
),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif char_embed:
|
||||
embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
|
||||
cols
|
||||
) >> with_array(norm)
|
||||
reduce_dimensions = Maxout(
|
||||
nO=width, nI=nM * nC + width, nP=3, dropout=0.0, normalize=True,
|
||||
)
|
||||
else:
|
||||
embed = norm
|
||||
|
||||
convolution = residual(
|
||||
expand_window(window_size=window_size)
|
||||
>> Maxout(
|
||||
nO=width,
|
||||
nI=width * ((window_size * 2) + 1),
|
||||
nP=maxout_pieces,
|
||||
dropout=0.0,
|
||||
normalize=True,
|
||||
)
|
||||
)
|
||||
if char_embed:
|
||||
tok2vec = embed >> with_array(
|
||||
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
else:
|
||||
tok2vec = FeatureExtractor(cols) >> with_array(
|
||||
embed >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
|
||||
if bilstm_depth >= 1:
|
||||
tok2vec = tok2vec >> PyTorchLSTM(
|
||||
nO=width, nI=width, depth=bilstm_depth, bi=True
|
||||
)
|
||||
if tok2vec.has_dim("nO") is not False:
|
||||
tok2vec.set_dim("nO", width)
|
||||
tok2vec.set_ref("embed", embed)
|
||||
return tok2vec
|
||||
|
|
Loading…
Reference in New Issue