Refactor Tok2Vec model

This commit is contained in:
Matthew Honnibal 2020-07-28 13:51:43 +02:00
parent c6b4f63c7c
commit 123f8b832d
1 changed files with 57 additions and 308 deletions

View File

@ -1,8 +1,8 @@
from typing import Optional, List from typing import Optional, List
from thinc.api import chain, clone, concatenate, with_array, uniqued from thinc.api import chain, clone, concatenate, with_array, with_padded
from thinc.api import Model, noop, with_padded, Maxout, expand_window from thinc.api import Model, noop
from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM from thinc.api import FeatureExtractor, HashEmbed, StaticVectors
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish from thincapi import expand_window, residual, Maxout, Mish
from thinc.types import Floats2d from thinc.types import Floats2d
from ... import util from ... import util
@ -12,198 +12,71 @@ from ...pipeline.tok2vec import Tok2VecListener
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
@registry.architectures.register("spacy.Tok2VecTensors.v1") @registry.architectures.register("spacy.Tok2VecListener.v1")
def tok2vec_tensors_v1(width, upstream="*"): def tok2vec_listener_v1(width, upstream="*"):
tok2vec = Tok2VecListener(upstream_name=upstream, width=width) tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
return tok2vec return tok2vec
@registry.architectures.register("spacy.VocabVectors.v1")
def get_vocab_vectors(name):
nlp = util.load_model(name)
return nlp.vocab.vectors
@registry.architectures.register("spacy.Tok2Vec.v1") @registry.architectures.register("spacy.Tok2Vec.v1")
def Tok2Vec(extract, embed, encode): def Tok2Vec(
field_size = 0 embed: Model[List[Doc], List[Floats2d]],
if encode.attrs.get("receptive_field", None): encode: Model[List[Floats2d], List[Floats2d]
field_size = encode.attrs["receptive_field"] ) -> Model[List[Doc], List[Floats2d]]:
with Model.define_operators({">>": chain, "|": concatenate}): tok2vec = with_array(
tok2vec = extract >> with_array(embed >> encode, pad=field_size) chain(embed, encode),
pad=encode.attrs.get("receptive_field", 0)
)
tok2vec.set_dim("nO", encode.get_dim("nO")) tok2vec.set_dim("nO", encode.get_dim("nO"))
tok2vec.set_ref("embed", embed) tok2vec.set_ref("embed", embed)
tok2vec.set_ref("encode", encode) tok2vec.set_ref("encode", encode)
return tok2vec return tok2vec
@registry.architectures.register("spacy.Doc2Feats.v1") @registry.architectures.register("spacy.HashEmbed.v1")
def Doc2Feats(columns): def HashEmbed(
return FeatureExtractor(columns)
@registry.architectures.register("spacy.HashEmbedCNN.v1")
def hash_embed_cnn(
pretrained_vectors: str,
width: int, width: int,
depth: int, rows: int,
embed_size: int, also_embed_subwords: bool,
maxout_pieces: int, also_use_static_vectors: bool
window_size: int, ):
subword_features: bool, cols = [NORM, PREFIX, SUFFIX, SHAPE, ORTH]
dropout: float,
) -> Model[List[Doc], List[Floats2d]:
# Does not use character embeddings: set to False by default
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
conv_depth=depth,
bilstm_depth=0,
maxout_pieces=maxout_pieces,
window_size=window_size,
subword_features=subword_features,
char_embed=False,
nM=0,
nC=0,
dropout=dropout,
)
seed = 7
@registry.architectures.register("spacy.HashCharEmbedCNN.v1") def make_hash_embed(feature):
def hash_charembed_cnn( nonlocal seed
pretrained_vectors, seed += 1
return HashEmbed(
width, width,
depth, rows if feature == NORM else rows // 2,
embed_size, column=cols.index(feature),
maxout_pieces, seed=seed
window_size,
nM,
nC,
dropout,
):
# Allows using character embeddings by setting nC, nM and char_embed=True
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
conv_depth=depth,
bilstm_depth=0,
maxout_pieces=maxout_pieces,
window_size=window_size,
subword_features=False,
char_embed=True,
nM=nM,
nC=nC,
dropout=dropout,
) )
if also_embed_subwords:
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1") embeddings = [
def hash_embed_bilstm_v1( make_hash_embed(NORM)
pretrained_vectors, make_hash_embed(PREFIX)
width, make_hash_embed(SUFFIX)
depth, make_hash_embed(SHAPE)
embed_size, ]
subword_features,
maxout_pieces,
dropout,
):
# Does not use character embeddings: set to False by default
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
bilstm_depth=depth,
conv_depth=0,
maxout_pieces=maxout_pieces,
window_size=1,
subword_features=subword_features,
char_embed=False,
nM=0,
nC=0,
dropout=dropout,
)
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
def hash_char_embed_bilstm_v1(
pretrained_vectors, width, depth, embed_size, maxout_pieces, nM, nC, dropout
):
# Allows using character embeddings by setting nC, nM and char_embed=True
return build_Tok2Vec_model(
width=width,
embed_size=embed_size,
pretrained_vectors=pretrained_vectors,
bilstm_depth=depth,
conv_depth=0,
maxout_pieces=maxout_pieces,
window_size=1,
subword_features=False,
char_embed=True,
nM=nM,
nC=nC,
dropout=dropout,
)
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
def LayerNormalizedMaxout(width, maxout_pieces):
return Maxout(nO=width, nP=maxout_pieces, dropout=0.0, normalize=True)
@registry.architectures.register("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(
columns, width, rows, use_subwords, pretrained_vectors, mix, dropout
):
norm = HashEmbed(
nO=width, nV=rows, column=columns.index("NORM"), dropout=dropout, seed=6
)
if use_subwords:
prefix = HashEmbed(
nO=width,
nV=rows // 2,
column=columns.index("PREFIX"),
dropout=dropout,
seed=7,
)
suffix = HashEmbed(
nO=width,
nV=rows // 2,
column=columns.index("SUFFIX"),
dropout=dropout,
seed=8,
)
shape = HashEmbed(
nO=width,
nV=rows // 2,
column=columns.index("SHAPE"),
dropout=dropout,
seed=9,
)
if pretrained_vectors:
glove = StaticVectors(
vectors_name=pretrained_vectors,
nO=width,
column=columns.index(ID),
dropout=dropout,
)
with Model.define_operators({">>": chain, "|": concatenate}):
if not use_subwords and not pretrained_vectors:
embed_layer = norm
else: else:
if use_subwords and pretrained_vectors: embeddings = [make_hash_embed(NORM)]
concat_columns = glove | norm | prefix | suffix | shape
elif use_subwords: if also_use_static_vectors:
concat_columns = norm | prefix | suffix | shape model = chain(
concatenate(
chain(FeatureExtractor(cols), concatenate(*embeddings)),
StaticVectors(width, dropout=dropout)
),
Maxout(width, dropout=dropout, normalize=True)
)
else: else:
concat_columns = glove | norm model = chain(
chain(FeatureExtractor(cols), concatenate(*embeddings)),
embed_layer = uniqued(concat_columns >> mix, column=columns.index("ORTH")) Maxout(width, concat_size, dropout=dropout, normalize=True)
)
return embed_layer return model
@registry.architectures.register("spacy.CharacterEmbed.v1") @registry.architectures.register("spacy.CharacterEmbed.v1")
@ -219,7 +92,7 @@ def CharacterEmbed(columns, width, rows, nM, nC, features, dropout):
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1") @registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
def MaxoutWindowEncoder(width, window_size, maxout_pieces, depth): def MaxoutWindowEncoder(width: int, window_size: int, maxout_pieces: int, depth: int):
cnn = chain( cnn = chain(
expand_window(window_size=window_size), expand_window(window_size=window_size),
Maxout( Maxout(
@ -249,133 +122,9 @@ def MishWindowEncoder(width, window_size, depth):
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1") @registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
def TorchBiLSTMEncoder(width, depth): def BiLSTMEncoder(width, depth, dropout):
import torch.nn
# TODO FIX
from thinc.api import PyTorchRNNWrapper
if depth == 0: if depth == 0:
return noop() return noop()
return with_padded( return with_padded(
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True)) PyTorchLSTM(width, width, bi=True, depth=depth, dropout=dropout)
) )
def build_Tok2Vec_model(
width: int,
embed_size: int,
pretrained_vectors: Optional[str],
window_size: int,
maxout_pieces: int,
subword_features: bool,
char_embed: bool,
nM: int,
nC: int,
conv_depth: int,
bilstm_depth: int,
dropout: float,
) -> Model:
if char_embed:
subword_features = False
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
norm = HashEmbed(
nO=width, nV=embed_size, column=cols.index(NORM), dropout=None, seed=0
)
if subword_features:
prefix = HashEmbed(
nO=width,
nV=embed_size // 2,
column=cols.index(PREFIX),
dropout=None,
seed=1,
)
suffix = HashEmbed(
nO=width,
nV=embed_size // 2,
column=cols.index(SUFFIX),
dropout=None,
seed=2,
)
shape = HashEmbed(
nO=width,
nV=embed_size // 2,
column=cols.index(SHAPE),
dropout=None,
seed=3,
)
else:
prefix, suffix, shape = (None, None, None)
if pretrained_vectors is not None:
glove = StaticVectors(
vectors=pretrained_vectors.data,
nO=width,
column=cols.index(ID),
dropout=dropout,
)
if subword_features:
columns = 5
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> Maxout(
nO=width, nI=width * columns, nP=3, dropout=0.0, normalize=True,
),
column=cols.index(ORTH),
)
else:
columns = 2
embed = uniqued(
(glove | norm)
>> Maxout(
nO=width, nI=width * columns, nP=3, dropout=0.0, normalize=True,
),
column=cols.index(ORTH),
)
elif subword_features:
columns = 4
embed = uniqued(
concatenate(norm, prefix, suffix, shape)
>> Maxout(
nO=width, nI=width * columns, nP=3, dropout=0.0, normalize=True,
),
column=cols.index(ORTH),
)
elif char_embed:
embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
cols
) >> with_array(norm)
reduce_dimensions = Maxout(
nO=width, nI=nM * nC + width, nP=3, dropout=0.0, normalize=True,
)
else:
embed = norm
convolution = residual(
expand_window(window_size=window_size)
>> Maxout(
nO=width,
nI=width * ((window_size * 2) + 1),
nP=maxout_pieces,
dropout=0.0,
normalize=True,
)
)
if char_embed:
tok2vec = embed >> with_array(
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
)
else:
tok2vec = FeatureExtractor(cols) >> with_array(
embed >> convolution ** conv_depth, pad=conv_depth
)
if bilstm_depth >= 1:
tok2vec = tok2vec >> PyTorchLSTM(
nO=width, nI=width, depth=bilstm_depth, bi=True
)
if tok2vec.has_dim("nO") is not False:
tok2vec.set_dim("nO", width)
tok2vec.set_ref("embed", embed)
return tok2vec