mirror of https://github.com/explosion/spaCy.git
Make deep_learning_keras example use sentences
This commit is contained in:
parent
e80944276f
commit
105aaadc07
|
@ -16,18 +16,18 @@ import spacy
|
||||||
|
|
||||||
class SentimentAnalyser(object):
|
class SentimentAnalyser(object):
|
||||||
@classmethod
|
@classmethod
|
||||||
def load(cls, path, nlp):
|
def load(cls, path, nlp, max_length=100):
|
||||||
with (path / 'config.json').open() as file_:
|
with (path / 'config.json').open() as file_:
|
||||||
|
|
||||||
model = model_from_json(file_.read())
|
model = model_from_json(file_.read())
|
||||||
with (path / 'model').open('rb') as file_:
|
with (path / 'model').open('rb') as file_:
|
||||||
lstm_weights = pickle.load(file_)
|
lstm_weights = pickle.load(file_)
|
||||||
embeddings = get_embeddings(nlp.vocab)
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
model.set_weights([embeddings] + lstm_weights)
|
model.set_weights([embeddings] + lstm_weights)
|
||||||
return cls(model)
|
return cls(model, max_length=max_length)
|
||||||
|
|
||||||
def __init__(self, model):
|
def __init__(self, model, max_length=100):
|
||||||
self._model = model
|
self._model = model
|
||||||
|
self.max_length = max_length
|
||||||
|
|
||||||
def __call__(self, doc):
|
def __call__(self, doc):
|
||||||
X = get_features([doc], self.max_length)
|
X = get_features([doc], self.max_length)
|
||||||
|
@ -36,10 +36,16 @@ class SentimentAnalyser(object):
|
||||||
|
|
||||||
def pipe(self, docs, batch_size=1000, n_threads=2):
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
||||||
for minibatch in cytoolz.partition_all(batch_size, docs):
|
for minibatch in cytoolz.partition_all(batch_size, docs):
|
||||||
Xs = get_features(minibatch, self.max_length)
|
minibatch = list(minibatch)
|
||||||
|
sentences = []
|
||||||
|
for doc in minibatch:
|
||||||
|
sentences.extend(doc.sents)
|
||||||
|
Xs = get_features(sentences, self.max_length)
|
||||||
ys = self._model.predict(Xs)
|
ys = self._model.predict(Xs)
|
||||||
for i, doc in enumerate(minibatch):
|
for sent, label in zip(sentences, ys):
|
||||||
doc.user_data['sentiment'] = ys[i]
|
sent.doc.sentiment += label - 0.5
|
||||||
|
for doc in minibatch:
|
||||||
|
yield doc
|
||||||
|
|
||||||
def set_sentiment(self, doc, y):
|
def set_sentiment(self, doc, y):
|
||||||
doc.sentiment = float(y[0])
|
doc.sentiment = float(y[0])
|
||||||
|
@ -48,6 +54,16 @@ class SentimentAnalyser(object):
|
||||||
# doc.user_data['my_data'] = y
|
# doc.user_data['my_data'] = y
|
||||||
|
|
||||||
|
|
||||||
|
def get_labelled_sentences(docs, doc_labels):
|
||||||
|
labels = []
|
||||||
|
sentences = []
|
||||||
|
for doc, y in zip(docs, doc_labels):
|
||||||
|
for sent in doc.sents:
|
||||||
|
sentences.append(sent)
|
||||||
|
labels.append(y)
|
||||||
|
return sentences, numpy.asarray(labels, dtype='int32')
|
||||||
|
|
||||||
|
|
||||||
def get_features(docs, max_length):
|
def get_features(docs, max_length):
|
||||||
docs = list(docs)
|
docs = list(docs)
|
||||||
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
|
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
|
||||||
|
@ -63,12 +79,21 @@ def get_features(docs, max_length):
|
||||||
|
|
||||||
|
|
||||||
def train(train_texts, train_labels, dev_texts, dev_labels,
|
def train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5):
|
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
|
||||||
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
|
by_sentence=True):
|
||||||
|
print("Loading spaCy")
|
||||||
|
nlp = spacy.load('en', entity=False)
|
||||||
embeddings = get_embeddings(nlp.vocab)
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
|
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
|
||||||
train_X = get_features(nlp.pipe(train_texts), lstm_shape['max_length'])
|
print("Parsing texts...")
|
||||||
dev_X = get_features(nlp.pipe(dev_texts), lstm_shape['max_length'])
|
train_docs = list(nlp.pipe(train_texts, batch_size=5000, n_threads=3))
|
||||||
|
dev_docs = list(nlp.pipe(dev_texts, batch_size=5000, n_threads=3))
|
||||||
|
if by_sentence:
|
||||||
|
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
|
||||||
|
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
|
||||||
|
|
||||||
|
train_X = get_features(train_docs, lstm_shape['max_length'])
|
||||||
|
dev_X = get_features(dev_docs, lstm_shape['max_length'])
|
||||||
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
|
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
|
||||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
return model
|
return model
|
||||||
|
@ -86,7 +111,7 @@ def compile_lstm(embeddings, shape, settings):
|
||||||
mask_zero=True
|
mask_zero=True
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2)))
|
model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2, bias=False)))
|
||||||
model.add(Dropout(settings['dropout']))
|
model.add(Dropout(settings['dropout']))
|
||||||
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
|
model.add(Bidirectional(LSTM(shape['nr_hidden'])))
|
||||||
model.add(Dropout(settings['dropout']))
|
model.add(Dropout(settings['dropout']))
|
||||||
|
@ -105,25 +130,23 @@ def get_embeddings(vocab):
|
||||||
return vectors
|
return vectors
|
||||||
|
|
||||||
|
|
||||||
def demonstrate_runtime(model_dir, texts):
|
def evaluate(model_dir, texts, labels, max_length=100):
|
||||||
'''Demonstrate runtime usage of the custom sentiment model with spaCy.
|
|
||||||
|
|
||||||
Here we return a dictionary mapping entities to the average sentiment of the
|
|
||||||
documents they occurred in.
|
|
||||||
'''
|
|
||||||
def create_pipeline(nlp):
|
def create_pipeline(nlp):
|
||||||
'''
|
'''
|
||||||
This could be a lambda, but named functions are easier to read in Python.
|
This could be a lambda, but named functions are easier to read in Python.
|
||||||
'''
|
'''
|
||||||
return [nlp.tagger, nlp.entity, SentimentAnalyser.load(model_dir, nlp)]
|
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
|
||||||
|
max_length=max_length)]
|
||||||
|
|
||||||
nlp = spacy.load('en', create_pipeline=create_pipeline)
|
nlp = spacy.load('en')
|
||||||
|
nlp.pipeline = create_pipeline(nlp)
|
||||||
|
|
||||||
entity_sentiments = collections.Counter(float)
|
correct = 0
|
||||||
|
i = 0
|
||||||
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
|
||||||
for ent in doc.ents:
|
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
|
||||||
entity_sentiments[ent.text] += doc.sentiment
|
i += 1
|
||||||
return entity_sentiments
|
return float(correct) / i
|
||||||
|
|
||||||
|
|
||||||
def read_data(data_dir, limit=0):
|
def read_data(data_dir, limit=0):
|
||||||
|
@ -162,10 +185,12 @@ def main(model_dir, train_dir, dev_dir,
|
||||||
dev_dir = pathlib.Path(dev_dir)
|
dev_dir = pathlib.Path(dev_dir)
|
||||||
if is_runtime:
|
if is_runtime:
|
||||||
dev_texts, dev_labels = read_data(dev_dir)
|
dev_texts, dev_labels = read_data(dev_dir)
|
||||||
demonstrate_runtime(model_dir, dev_texts)
|
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
|
||||||
|
print(acc)
|
||||||
else:
|
else:
|
||||||
|
print("Read data")
|
||||||
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
||||||
dev_texts, dev_labels = read_data(dev_dir)
|
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
|
||||||
train_labels = numpy.asarray(train_labels, dtype='int32')
|
train_labels = numpy.asarray(train_labels, dtype='int32')
|
||||||
dev_labels = numpy.asarray(dev_labels, dtype='int32')
|
dev_labels = numpy.asarray(dev_labels, dtype='int32')
|
||||||
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
|
@ -175,7 +200,9 @@ def main(model_dir, train_dir, dev_dir,
|
||||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||||
weights = lstm.get_weights()
|
weights = lstm.get_weights()
|
||||||
with (model_dir / 'model').open('wb') as file_:
|
with (model_dir / 'model').open('wb') as file_:
|
||||||
pickle.dump(file_, weights[1:])
|
pickle.dump(weights[1:], file_)
|
||||||
|
with (model_dir / 'config.json').open('wb') as file_:
|
||||||
|
file_.write(lstm.to_json())
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue