Update Vectors API docs

This commit is contained in:
ines 2017-11-01 00:56:54 +01:00
parent 9eb998443f
commit 0d8f4a534b
1 changed files with 172 additions and 71 deletions

View File

@ -5,46 +5,47 @@ include ../_includes/_mixins
p
| Vectors data is kept in the #[code Vectors.data] attribute, which should
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
| #[code cupy.ndarray] (for GPU vectors).
| #[code cupy.ndarray] (for GPU vectors). Multiple keys can be mapped to
| the same vector, and not all of the rows in the table need to be
| assigned so #[code vectors.n_keys] may be greater or smaller than
| #[code vectors.shape[0]].
+h(2, "init") Vectors.__init__
+tag method
p
| Create a new vector store. To keep the vector table empty, pass
| #[code width=0]. You can also create the vector table and add
| vectors one by one, or set the vector values directly on initialisation.
| Create a new vector store. You can set the vector values and keys
| directly on initialisation, or supply a #[code shape] keyword argument
| to create an empty table you can add vectors to later.
+aside-code("Example").
from spacy.vectors import Vectors
from spacy.strings import StringStore
empty_vectors = Vectors(StringStore())
empty_vectors = Vectors(shape=(10000, 300))
vectors = Vectors([u'cat'], width=300)
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
vector_table = numpy.zeros((3, 300), dtype='f')
vectors = Vectors(StringStore(), data=vector_table)
data = numpy.zeros((3, 300), dtype='f')
keys = [u'cat', u'dog', u'rat']
vectors = Vectors(data=data, keys=keys)
+table(["Name", "Type", "Description"])
+row
+cell #[code strings]
+cell #[code StringStore] or list
+cell
| List of strings, or a #[+api("stringstore") #[code StringStore]]
| that maps strings to hash values, and vice versa.
+row
+cell #[code width]
+cell int
+cell Number of dimensions.
+row
+cell #[code data]
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell The vector data.
+row
+cell #[code keys]
+cell iterable
+cell A sequence of keys aligned with the data.
+row
+cell #[code shape]
+cell tuple
+cell
| Size of the table as #[code (n_entries, n_columns)], the number
| of entries and number of columns. Not required if you're
| initialising the object with #[code data] and #[code keys].
+row("foot")
+cell returns
+cell #[code Vectors]
@ -54,97 +55,92 @@ p
+tag method
p
| Get a vector by key. If key is a string, it is hashed to an integer ID
| using the #[code Vectors.strings] table. If the integer key is not found
| in the table, a #[code KeyError] is raised.
| Get a vector by key. If the key is not found in the table, a
| #[code KeyError] is raised.
+aside-code("Example").
vectors = Vectors(StringStore(), 300)
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
cat_vector = vectors[u'cat']
cat_id = nlp.vocab.strings[u'cat']
cat_vector = nlp.vocab.vectors[cat_id]
assert cat_vector == nlp.vocab[u'cat'].vector
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell unicode / int
+cell int
+cell The key to get the vector for.
+row
+cell returns
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell The vector for the key.
+h(2, "setitem") Vectors.__setitem__
+tag method
p
| Set a vector for the given key. If key is a string, it is hashed to an
| integer ID using the #[code Vectors.strings] table.
| Set a vector for the given key.
+aside-code("Example").
vectors = Vectors(StringStore(), 300)
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
cat_id = nlp.vocab.strings[u'cat']
vector = numpy.random.uniform(-1, 1, (300,))
nlp.vocab.vectors[cat_id] = vector
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell unicode / int
+cell int
+cell The key to set the vector for.
+row
+cell #[code vector]
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell The vector to set.
+h(2, "iter") Vectors.__iter__
+tag method
p Yield vectors from the table.
p Iterate over the keys in the table.
+aside-code("Example").
vector_table = numpy.zeros((3, 300), dtype='f')
vectors = Vectors(StringStore(), vector_table)
for vector in vectors:
print(vector)
for key in nlp.vocab.vectors:
print(key, nlp.vocab.strings[key])
+table(["Name", "Type", "Description"])
+row("foot")
+cell yields
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+cell A vector from the table.
+cell int
+cell A key in the table.
+h(2, "len") Vectors.__len__
+tag method
p Return the number of vectors that have been assigned.
p Return the number of vectors in the table.
+aside-code("Example").
vector_table = numpy.zeros((3, 300), dtype='f')
vectors = Vectors(StringStore(), vector_table)
vectors = Vectors(shape=(3, 300))
assert len(vectors) == 3
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell int
+cell The number of vectors in the data.
+cell The number of vectors in the table.
+h(2, "contains") Vectors.__contains__
+tag method
p
| Check whether a key has a vector entry in the table. If key is a string,
| it is hashed to an integer ID using the #[code Vectors.strings] table.
| Check whether a key has been mapped to a vector entry in the table.
+aside-code("Example").
vectors = Vectors(StringStore(), 300)
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
assert u'cat' in vectors
cat_id = nlp.vocab.strings[u'cat']
nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
assert cat_id in vectors
+table(["Name", "Type", "Description"])
+row
+cell #[code key]
+cell unicode / int
+cell int
+cell The key to check.
+row("foot")
@ -156,13 +152,20 @@ p
+tag method
p
| Add a key to the table, optionally setting a vector value as well. If
| key is a string, it is hashed to an integer ID using the
| #[code Vectors.strings] table.
| Add a key to the table, optionally setting a vector value as well. Keys
| can be mapped to an existing vector by setting #[code row], or a new
| vector can be added. When adding unicode keys, keep in mind that the
| #[code Vectors] class itself has no
| #[+api("stringstore") #[code StringStore]], so you have to store the
| hash-to-string mapping separately. If you need to manage the strings,
| you should use the #[code Vectors] via the
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors].
+aside-code("Example").
vectors = Vectors(StringStore(), 300)
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
vector = numpy.random.uniform(-1, 1, (300,))
cat_id = nlp.vocab.strings[u'cat']
nlp.vocab.vectors.add(cat_id, vector=vector)
nlp.vocab.vectors.add(u'dog', row=0)
+table(["Name", "Type", "Description"])
+row
@ -172,25 +175,66 @@ p
+row
+cell #[code vector]
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
+cell An optional vector to add.
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell An optional vector to add for the key.
+row
+cell #[code row]
+cell int
+cell An optional row number of a vector to map the key to.
+row("foot")
+cell returns
+cell int
+cell The row the vector was added to.
+h(2, "keys") Vectors.keys
+tag method
p A sequence of the keys in the table.
+aside-code("Example").
for key in nlp.vocab.vectors.keys():
print(key, nlp.vocab.strings[key])
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell iterable
+cell The keys.
+h(2, "values") Vectors.values
+tag method
p
| Iterate over vectors that have been assigned to at least one key. Note
| that some vectors may be unassigned, so the number of vectors returned
| may be less than the length of the vectors table.
+aside-code("Example").
for vector in nlp.vocab.vectors.values():
print(vector)
+table(["Name", "Type", "Description"])
+row("foot")
+cell yields
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell A vector in the table.
+h(2, "items") Vectors.items
+tag method
p Iterate over #[code (string key, vector)] pairs, in order.
p Iterate over #[code (key, vector)] pairs, in order.
+aside-code("Example").
vectors = Vectors(StringStore(), 300)
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
for key, vector in vectors.items():
print(key, vector)
for key, vector in nlp.vocab.vectors.items():
print(key, nlp.vocab.strings[key], vector)
+table(["Name", "Type", "Description"])
+row("foot")
+cell yields
+cell tuple
+cell #[code (string key, vector)] pairs, in order.
+cell #[code (key, vector)] pairs, in order.
+h(2, "shape") Vectors.shape
+tag property
@ -200,7 +244,7 @@ p
| dimensions in the vector table.
+aside-code("Example").
vectors = Vectors(StringStore(), 300)
vectors = Vectors(shape(1, 300))
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
rows, dims = vectors.shape
assert rows == 1
@ -212,6 +256,59 @@ p
+cell tuple
+cell A #[code (rows, dims)] pair.
+h(2, "size") Vectors.size
+tag property
p The vector size, i.e. #[code rows * dims].
+aside-code("Example").
vectors = Vectors(shape=(500, 300))
assert vectors.size == 150000
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell int
+cell The vector size.
+h(2, "is_full") Vectors.is_full
+tag property
p
| Whether the vectors table is full and has no slots are available for new
| keys. If a table is full, it can be resized using
| #[+api("vectors#resize") #[code Vectors.resize]].
+aside-code("Example").
vectors = Vectors(shape=(1, 300))
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
assert vectors.is_full
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell bool
+cell Whether the vectors table is full.
+h(2, "n_keys") Vectors.n_keys
+tag property
p
| Get the number of keys in the table. Note that this is the number of
| #[em all] keys, not just unique vectors. If several keys are mapped
| are mapped to the same vectors, they will be counted individually.
+aside-code("Example").
vectors = Vectors(shape=(10, 300))
assert len(vectors) == 10
assert vectors.n_keys == 0
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell int
+cell The number of all keys in the table.
+h(2, "from_glove") Vectors.from_glove
+tag method
@ -223,6 +320,10 @@ p
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
| vectors, etc. By default GloVe outputs 64-bit vectors.
+aside-code("Example").
vectors = Vectors()
vectors.from_glove('/path/to/glove_vectors')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
@ -323,7 +424,7 @@ p Load state from a binary string.
+table(["Name", "Type", "Description"])
+row
+cell #[code data]
+cell #[code numpy.ndarray] / #[code cupy.ndarray]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell
| Stored vectors data. #[code numpy] is used for CPU vectors,
| #[code cupy] for GPU vectors.
@ -337,7 +438,7 @@ p Load state from a binary string.
+row
+cell #[code keys]
+cell #[code numpy.ndarray]
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
+cell
| Array keeping the keys in order, such that
| #[code keys[vectors.key2row[key]] == key]