From 0c7aeb9de7105e513d38544c15c860764a521bcb Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Sun, 7 Dec 2014 15:29:04 +1100 Subject: [PATCH] * Begin revising tagger, focussing on POS tagging --- spacy/tagger.pxd | 11 +----- spacy/tagger.pyx | 100 +++++++++++++++++++++++------------------------ 2 files changed, 50 insertions(+), 61 deletions(-) diff --git a/spacy/tagger.pxd b/spacy/tagger.pxd index 11d8d2a4c..0a9b4a0c4 100644 --- a/spacy/tagger.pxd +++ b/spacy/tagger.pxd @@ -5,20 +5,17 @@ from thinc.features cimport Extractor from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t from .typedefs cimport hash_t -from .context cimport Slots from .tokens cimport Tokens cpdef enum TagType: POS - ENTITY SENSE cdef class Tagger: cpdef int set_tags(self, Tokens tokens) except -1 - cpdef class_t predict(self, int i, Tokens tokens) except 0 - cpdef int tell_answer(self, list gold) except -1 + cpdef class_t predict(self, int i, Tokens tokens, object golds=*) except 0 cpdef readonly Pool mem cpdef readonly Extractor extractor @@ -26,9 +23,3 @@ cdef class Tagger: cpdef readonly TagType tag_type cpdef readonly list tag_names - - cdef class_t _guess - cdef atom_t* _context - cdef feat_t* _feats - cdef weight_t* _values - cdef weight_t* _scores diff --git a/spacy/tagger.pyx b/spacy/tagger.pyx index 428814f70..22732843d 100644 --- a/spacy/tagger.pyx +++ b/spacy/tagger.pyx @@ -1,8 +1,10 @@ # cython: profile=True -from __future__ import print_function from __future__ import unicode_literals from __future__ import division +from .context cimport fill_context +from .context cimport N_FIELDS + from os import path import os import shutil @@ -10,11 +12,7 @@ import random import json import cython - -from .context cimport fill_context -from .context cimport N_FIELDS - -from thinc.features cimport ConjFeat +from thinc.features cimport Feature, count_feats NULL_TAG = 0 @@ -35,7 +33,8 @@ def setup_model_dir(tag_type, tag_names, templates, model_dir): def train(train_sents, model_dir, nr_iter=10): cdef Tokens tokens - tagger = Tagger(model_dir) + cdef Tagger tagger = Tagger(model_dir) + cdef int i for _ in range(nr_iter): n_corr = 0 total = 0 @@ -43,9 +42,10 @@ def train(train_sents, model_dir, nr_iter=10): assert len(tokens) == len(golds), [t.string for t in tokens] for i in range(tokens.length): if tagger.tag_type == POS: - gold = _get_gold_pos(i, golds, tokens.pos) - elif tagger.tag_type == ENTITY: - gold = _get_gold_ner(i, golds, tokens.ner) + gold = _get_gold_pos(i, golds) + else: + raise StandardError + guess = tagger.predict(i, tokens) tokens.set_tag(i, tagger.tag_type, guess) if gold is not None: @@ -59,7 +59,7 @@ def train(train_sents, model_dir, nr_iter=10): tagger.model.dump(path.join(model_dir, 'model')) -cdef object _get_gold_pos(i, golds, int* pred): +cdef object _get_gold_pos(i, golds): if golds[i] == 0: return None else: @@ -96,17 +96,11 @@ cdef class Tagger: templates = cfg['templates'] self.tag_names = cfg['tag_names'] self.tag_type = cfg['tag_type'] - self.extractor = Extractor(templates, [ConjFeat] * len(templates)) + self.extractor = Extractor(templates) self.model = LinearModel(len(self.tag_names)) if path.exists(path.join(model_dir, 'model')): self.model.load(path.join(model_dir, 'model')) - self._context = self.mem.alloc(N_FIELDS, sizeof(atom_t)) - self._feats = self.mem.alloc(self.extractor.n+1, sizeof(feat_t)) - self._values = self.mem.alloc(self.extractor.n+1, sizeof(weight_t)) - self._scores = self.mem.alloc(self.model.nr_class, sizeof(weight_t)) - self._guess = NULL_TAG - cpdef int set_tags(self, Tokens tokens) except -1: """Assign tags to a Tokens object. @@ -119,7 +113,7 @@ cdef class Tagger: for i in range(tokens.length): tokens.set_tag(i, self.tag_type, self.predict(i, tokens)) - cpdef class_t predict(self, int i, Tokens tokens) except 0: + cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except 0: """Predict the tag of tokens[i]. The tagger remembers the features and prediction, in case you later call tell_answer. @@ -127,38 +121,20 @@ cdef class Tagger: >>> tag = EN.pos_tagger.predict(0, tokens) >>> assert tag == EN.pos_tagger.tag_id('DT') == 5 """ - fill_context(self._context, i, tokens) - self.extractor.extract(self._feats, self._values, self._context, NULL) - self._guess = self.model.score(self._scores, self._feats, self._values) - return self._guess - - cpdef int tell_answer(self, list golds) except -1: - """Provide the correct tag for the word the tagger was last asked to predict. - During Tagger.predict, the tagger remembers the features and prediction - for the example. These are used to calculate a weight update given the - correct label. - - >>> tokens = EN.tokenize('An example sentence.') - >>> guess = EN.pos_tagger.predict(1, tokens) - >>> JJ = EN.pos_tagger.tag_id('JJ') - >>> JJ - 7 - >>> EN.pos_tagger.tell_answer(JJ) - """ - cdef class_t guess = self._guess - if guess in golds: - self.model.update({}) - return 0 - best_gold = golds[0] - best_score = self._scores[best_gold-1] - for gold in golds[1:]: - if self._scores[gold-1] > best_gold: - best_score = self._scores[best_gold-1] - best_gold = gold - counts = {guess: {}, best_gold: {}} - self.extractor.count(counts[best_gold], self._feats, 1) - self.extractor.count(counts[guess], self._feats, -1) - self.model.update(counts) + cdef int n_feats + cdef atom_t[N_FIELDS] context + print sizeof(context) + fill_context(context, i, tokens.data) + cdef Feature* feats = self.extractor.get_feats(context, &n_feats) + cdef weight_t* scores = self.model.get_scores(feats, n_feats) + cdef class_t guess = _arg_max(scores, self.nr_class) + if golds is not None and guess not in golds: + best = _arg_max_among(scores, golds) + counts = {} + count_feats(counts[guess], feats, n_feats, -1) + count_feats(counts[best], feats, n_feats, 1) + self.model.update(counts) + return guess def tag_id(self, object tag_name): """Encode tag_name into a tag ID integer.""" @@ -167,3 +143,25 @@ cdef class Tagger: tag_id = len(self.tag_names) self.tag_names.append(tag_name) return tag_id + + +cdef class_t _arg_max(weight_t* scores, int n_classes): + cdef int best = 0 + cdef weight_t score = scores[best] + cdef int i + for i in range(1, n_classes): + if scores[i] > score: + score = scores[i] + best = i + return best + + +cdef class_t _arg_max_among(weight_t* scores, list classes): + cdef int best = classes[0] + cdef weight_t score = scores[best] + cdef class_t clas + for clas in classes: + if scores[clas] > score: + score = scores[clas] + best = clas + return best